Трансивер «Клопик»: технические характеристики
Очень простой с точки зрения конструкции трансивер «Клопик» выполняется исключительно на элементах дискретного типа. Он идеально подходит для работы в радиолюбительских диапазонах в режимах CW, SSB и QRP (ключом). В нем имеется функция, которая называется PSK. С ее помощью можно трансивер запустить в качестве стационарного передающего аппарата, соединив его с персональным компьютером. Можно сказать даже, что получится своеобразный СДР-трансивер.
Особенности трансивера
В конструкции достаточно малое число элементов, это можно назвать основным достоинством аппарата. И нужно отметить, что в устройстве отсутствуют микросхемы, все построено на транзисторных каскадах. А это дает огромный плюс – можно без проблем вмешаться в практически любую часть схемы и заменить один-два транзистора, чтобы повысить мощность устройства.
Изготовить трансивер «Клопик» своими руками сможет даже начинающий радиолюбитель. Более того, он рекомендован к повторению всем, кто пытается познать прелести радиодела. Минимальное количество намоточных элементов, которые требуют настройки, облегчает эксплуатацию устройства. Коммутация режимов приема и передачи упрощена до максимума, используется всего одно реле. Впрочем, можно и его исключить, установить кнопку или педаль.
Особенности схемы трансивера
Очень высокая степень энергосбережения – устройство может работать даже при падении напряжения питания до 6 В. Правда, только приемный тракт сможет функционировать нормально. Но все равно это огромный плюс при использовании трансивера в походном режиме. Схема трансивера выполнена с одной промежуточной частотой. Существует несколько видов схем, можно использовать в конструкции узлы с иными элементами, нет необходимости придерживаться эталона.
На рисунке показана схема трансивера «Клопик». Печатная плата может изготавливаться как вручную, так и посредством программ для персонального компьютера. На схеме присутствуют обозначения таких узлов:
Глядя на схему, можно увидеть, что в конструкции имеется несколько микросхем, но все они установлены в блоке УНЧ.
Намоточные данные катушек и трансформаторов
Немного о намоточных элементах:
Режим приема
На выходе полосовых фильтров появляется сигнал, который подается на смеситель, собранный на диодах. На второй вход этого смесителя поступает сигнал от ГПД. Для трансивера «Клопик» использованы только классические схемы узлов. Затем сигнал подается на УПЧ, который строится на двух транзисторах – VT1 и VT2. В качестве нагрузки каскада применяется кварцевый фильтр. С его помощью обеспечивается селективность приемной части по соседним каналам.
Затем сигнал поступает на второй каскад УПЧ, который выполняется тоже на двух транзисторах – VT3 и VT4. В качестве нагрузки применяется второй кварц. Затем усиленный сигнал поступает еще на один каскад УПЧ, который выполнен на транзисторах VT5 и VT6. И только после него на кольцевой смеситель, построенный на диодах. На этот же смеситель поступает сигнал, который вырабатывается опорным кварцевым генератором (собран на транзисторе VT10).
АРУ и УНЧ
С выхода смесителя снимается уже сигнал низкой частоты (звуковой). И он через реле подается на УЗЧ, который в классической схеме собран на микросхеме типа LM386. Это распространенная микросхема, которая используется в различной усилительной аппаратуре. У нее очень хорошая чувствительность, низкий уровень шумов, высокий коэффициент усиления. Для регулировки громкости на входе усилителя установлен резистор R32.
На выходе устанавливается простая гарнитура для персонального компьютера с двумя динамиками. Схема автоматической регулировки усиления построена на:
Схема АРУ очень простая, но у нее высокая эффективность, она позволяет достаточно комфортно прослушивать сигналы радиостанций при уровне эфирного шума вплоть до +40 dB (если судить по S-метру).
АРУ начинает работать только сигналов с силой более 7. Даже слабые радиостанции без труда «читаются». В конструкции S-метра применен усилитель тока, выполненный на транзисторе VT11 – к выходу его подключается микроамперметр, у которого ток наибольшего отклонения 200 мкА.
Режим передачи
Обратите внимание на то, что для изготовления можно приобрести специальный набор. Трансивер «Клопик» имеет одну особенность – все каскады УПЧ, которые имеются в нем, являются реверсивными. Они работают в режиме как приема, так и передачи. В оригинальной конструкции используется три электромагнитных реле, обозначенных на схеме К1-К3. Контакты реле К1.1 изменяют направление движения сигнала по каскадам УПЧ.
А вот контактная группа К3.1 подает напряжение на усилитель микрофона. При этом отключается УПТ, УНЧ и S-метр. Теперь сигнал двигается по такой цепочке:
Несущая может подавляться в балансном модуляторе при помощи подстроечного резистора R20. Иногда для глубокого подавления устанавливаются дополнительно конденсаторы подстроечного типа (параллельно к уже смонтированным).
В статье было приведено изображение печатной платы трансивера «Клопик», его принципиальная схема рассмотрена максимально детально. Нужно отметить, что транзисторы в высокочастотной части можно применять более мощные, чтобы добиться максимальной дальности радиосвязи.
Трансивер клопик своими руками
Трансивер Клопик
Уже более 10 лет не угасает интерес к разработке трансивера Игоря Августовского (RV3LE). Свою разработку он назвал клопиком.
После первого опубликования схемы основной платы, в нее вносились некоторые изменения, не приводящие к существенному изменению схемы.
Внесен узел измерения уровня принимаемого сигнала:
Предложена регулировка усиления по ВЧ на основе плавного аттенюатора, который устанавливается перед ДПФ.
В 2013 году Сергеем Тележниковым, RV3YF, (радиолавка КВ и УКВ, www.rv3yf.com) предлагался набор, включая плату, для сборки основного тракта Клопика с двумя 4-х кристальными кварцевыми фильтрами.
Плата основного тракта в сборе
Указанная плата в пауке с синтезатором на AD9851
Проверка основной платы клопика с синтезатором на si5351.
Прием ведется без диапазонных полосовых фильтров на антенну
Все та же плата клопика в работе
Основная плата с основным 8-и кристальным и подчисточным 4-х
кристальным фильтрами, собранная из нового набора
Проверка платы с основным 8-и кристальным и
подчисточным 4-х кристальным фильтрами
Проверка платы с основным 8-и кристальным и
подчисточным 4-х кристальным фильтрами (второе видео)
Демонстрация работы Клопика, собранного в корпусе прибора
Собранный Клопик в изготовленном для него корпусе
Клопик автора, RV3LE
Сравнение по приему Клопика с IC-718
Клопик на передаче
Сборка трансивера на базе комплектов RV3YF
(радиолавка КВ и УКВ)
Блок схема TRX Клопик с синтезатором
Принципиальная электрическая схема.
Для начинающего коротковолновика кажется наиболее приемлемый вариант, когда нет финансовой возможности купить новый трансивер. Покупка приемлемого по качеству б.у трансивера потребует наличия более 20000 руб.
Приобретение вышеуказанных наборов в зависимости от финансовых возможностей можно разбить на 2 или на 3 месяца. При этом у Вас будет трансивер, который построен своими руками. При настройке основной платы и фильтров можно воспользоваться трансивером знакомого коротковолновика.
Для работы телеграфом в трансивер можно включить ниже описываемый CW блок с автоматическим телеграфным ключом.
Тема: Самодельный КФ к трансиверу «КЛОПИК»
Опции темы
Поиск по теме
Самодельный КФ к трансиверу «КЛОПИК»
Re: Самодельный КФ к трансиверу «КЛОПИК».
Это точно, многие из нас могут позволить преобрести готовый трансивер, да вот почемуто каптим паяльником и тратим «драгоценное » время!
Самодельный КФ к трансиверу «КЛОПИК».
Вот прога расчета кварцевого фильтра может кому пригодится
Re: Самодельный КФ к трансиверу «КЛОПИК».
Вот страница с более свежей программой
которая учитывает сдвиг.
Кварцы подбирать не надо.Только вычислить Ld. Как? там всё есть:
LCFD6300. Версия :6300.
Re: Самодельный КФ к трансиверу «КЛОПИК».
2.Давим наверху слева клавишу рас читать.
Смотрим х-ку.И самое главное на ёмкости на схеме.
Их четыре попарно.
3.Мастерим трёхзвенный фильтр. ( Макетируем )
4. Снимаем его характеристику. Определяем полосу пропускания.
Если сами не сможете попросите кого нибудь. Это самое важное
и сложное изо всех операций. Но без неё не обойтись.
Вот так мы высчитываем Ld.. 8)
Высчитывать Ld c помощью генератора который в программе
даёт плохой весьма приближённый результат.
Иногда вообще никакого результата.
Далее в этой программе мы с уже известным нам Ld
рассчитываем любой SSB фильтр и собираем.
Рекомендую крайние ёмкости в фильтр не запаивать
они должны входить в схему согласования
кв.фильтра с вашей схемой трансивера..
Для своих фильтров мы применяем дешёвые паловские кварцы
в маленьких корпусах типа лодочки см.фото ниже.
Ld у них = 52-54
Миниатюры
Трансивер клопик своими руками
Маленьких размеров, выполненный на дискретных элементах, этот трансивер, скорее всего, предназначен для работы QRP в режимах CW и SSB в походных условиях. Однако функция PSK позволяет применить его и стационарно, при совместной работе с ПК. Впрочем, ничто не мешает взять в поход ноутбук или КПК…
В режиме приема (RX) сигнал с выхода диапазонных полосовых фильтров (ДПФ) поступает на «классический» кольцевой диодный смеситель. На другой вход смесителя подается сигнал с генератора плавного диапазона (ГПД). С выхода смесителя сигнал промежуточной частоты (ПЧ) поступает на первый каскад усилителя промежуточной частоты (УПЧ), выполненный на транзисторах VT1 и VT2. Нагрузкой этого каскада является кварцевый фильтр ZQ1, обеспечивающий основную селективность приемника по соседнему каналу. Отфильтрованный сигнал усиливается еще одним каскадом УПЧ на транзисторах VT3 и VT4, который также нагружен на кварцевый фильтр (ZQ2), который является «подчисточ-ным». С выхода этого фильтра сигнал поступает на третий каскад УПЧ на транзисторах VT5 и VT6, а с его выхода — на второй диодный кольцевой смеситель, на который также подается сигнал опорного кварцевого генератора (ОГ), выполненного на транзисторе VT10. На выходе смесителя выделяется сигнал звуковой частоты, который через нормально замкнутые релейные контакты К2.1 поступает на усилитель низкой частоты (УНЧ) на микросхеме LM386. Эта широко распространенная микросхема имеет хорошие усилительные и шумовые характеристики. Выход УНЧ нагружен на переменный резистор R32, который обеспечивает регулировку громкости. ВА1 — компьютерная гарнитура, в которой «динамики» сопротивлением 2×32 Ом включены параллельно.
На элементах С28, VD9, VD10, R26, С24 и VT9 выполнена схема автоматической регулировки усиления (АРУ), предложенная Сергеем Беленецким, US5MSQ, в приемнике «Малыш» (спасибо, Сергей!). Несмотря на свою простоту, АРУ довольно эффективна и позволяет весьма комфортно принимать сигналы с уровнями от эфирных шумов до 9 +40 дБ по S-метру.
АРУ начинает срабатывать при силе сигналов 7 баллов и больше. «Давить» более слабые сигналы, на мой взгляд, смысла нет. При выбранном пороге работы АРУ слабые станции легко «читаются» на фоне гораздо более мощных.
В S-метре используется усилитель постоянного тока на транзисторе VT11, нагруженный на микроамперметр с током максимального отклонения 200 мкА.
Прежде чем перейти к рассмотрению работы тракта в режиме передачи, отмечу, что все три каскада УПЧ являются реверсивными. Идея реверсивного усилителя была почерпнута из схемы, размещенной на сайте американского радиолюбителя SteVen Weber, KD1JV ( http:// kd1jv.qrpradio.com ).
В режиме передачи (ТХ) при нажатии на педаль срабатывают реле К1 — КЗ. Релейными контактами К1.1 реверсируется направление прохождения сигнала в каскадах УПЧ, а через контакты К3.1 напряжение питания подается на микрофонный усилитель (при этом снимается напряжение питания с УНЧ и УПТ S-метра). Сигнал с микрофонного усилителя на транзисторах VT7 и VT8 через релейные контакты К2.1 поступает на кольцевой смеситель на диодах VD5 — VD8, в режиме передачи играющий роль балансного модулятора. С выхода модулятора двухполосный сигнал с подавленной несущей (DSB) проходит через все три каскада УПЧ в «обратном» направлении (т.е. от балансного модулятора к смесителю на диодах VD1 — VD4), и в процессе прохождения сигнала кварцевыми фильтрами ZQ1 и ZQ2 выделяется требуемая боковая полоса, т.е. формируется SSB-сигнал. Дальнейший перенос однополосного сигнала ПЧ на рабочую частоту, находящуюся в одном из любительских KB диапазонов, происходит в кольцевом смесителе на диодах VD1 — VD4, после которого сигнал подается на диапазонные полосовые фильтры. В режимах приема и передачи используется один комплект 50-омных ДПФ.
Подавление несущей в балансном модуляторе регулируется подстроечным резистором R20. Возможно (подчеркиваю — возможно!), для более глубокого подавления придется параллельно какому-нибудь из диодов модулятора подключить подстроечный конденсатор емкостью 4 — 25 пФ. Иногда такие
конденсаторы на схемах изображают пунктиром. Но при хорошо подобранных диодах необходимости в конденсаторе нет, поэтому на схеме он не изображен.
Несколько слов о самих реверсивных каскадах. Режимы транзисторов устанавливаются автоматически, и при исправных деталях каскады в настройке не нуждаются. При напряжении питания +6 В коэффициент усиления такого каскада составляет 17 — 18дБ, при +9В — +20 дБ, при 12 В — +23 — 24 дБ. При этом за счет глубоких обратных связей каскад работает очень устойчиво, а коэффициент усиления слабо зависит от типа применяемых транзисторов. Первые эксперименты проводились на парах транзисторов КТ315 и КТ361, но, руководствуясь желанием получить в режиме приема максимально достижимые шумовые характеристики тракта, я отдал предпочтение транзисторам КТ368. Транзисторы структуры р-п-р, работающие в режиме передачи, могут быть любыми из серий КТ363, КТ326, КТ3107.
Как видно из схемы, все три каскада идентичны, за исключением каскада на VT5 и VT6, в котором отсутствует конденсатор в эмиттерной цепи транзистора VT5. Это сделано для снижения коэффициента усиления в режиме передачи, что позволяет избежать перегрузки последующих каскадов и смесителя.
Транзистор КП501 в системе АРУ можно заменить импортным 2N7000. В качестве индикатора S-метра хорошо подходит измерительная головка от старого кассетного магнитофона.
Диоды для смесителей желательно подобрать по прямому сопротивлению. Безусловно, наилучшие результаты получатся в том случае, если применить диоды, специально разработанные для смесителей и подобранные в «четверки» (например, КД922АГ). Однако если этих диодов нет, не надо отчаиваться — в схеме будут неплохо работать даже КД521.
Широкополосные трансформаторы Т1, Т2 и Т8 намотаны на кольцах К7х4х2 проницаемостью 600 — 1000НН тремя слегка скрученными проводами (2-3 скрутки на сантиметр) ПЭВ диаметром 0,15 — 0,17 мм и имеют 15 —18 витков. Трансформатор балансного модулятора Т7 должен иметь достаточную индуктивность для сигналов звуковых частот, поэтому его нужно намотать на кольце К10x6x5 проницаемостью не ниже 1000HH такой же скруткой проводов (в один слой) до заполнения кольца. Особое внимание следует обратить на симметричность выполнения обмоток всех трансформаторов — от этого зависит качество балансировки смесителей.
Трансформаторы ТЗ — Т6 намотаны на кольцах К7х4х2 проницаемостью 600 — 1000НН двойным скрученным (2-3 скрутки на сантиметр) проводом ПЭВ диаметром 0,15 — 0,17 мм и имеют 15 —18 витков, включенных согласно-последо-вательно (начало одной обмотки соединяется с концом другой, образуя средний вывод).
Катушка L1, используемая для подстройки частоты ОГ, имеет 25 витков провода ПЭЛ-0,1, намотанного на каркасе 05 мм с подстроенным сердечником от СБ9 с резьбой МЗ, и помещена в экран.
Реле К1 — КЗ желательно применить малогабаритные (например, РЭС49 или РЭК23).
О кварцевых фильтрах: в авторском варианте 1-й ФОС — восьми-кристальный, 2-й («подчисточный») — четырехкристальный. Но это не требование, а скорее, пожелание. В принципе, в схеме можно применять любые фильтры и на любую частоту, доступные радиолюбителю. Это еще одно достоинство примененных реверсивных каскадов, в которых отсутствуют резонансные цепи, требующие настройки. Однако следует иметь в виду, что поскольку в УПЧ используется не самая оптимальная, но зато очень простая и доступная начинающему радиолюбителю простейшая автотрансформаторная схема согласования между усилителями и кварцевыми фильтрами, то единственное требование к кварцевым фильтрам заключается в величине их входного и выходного сопротивлений, которая должна быть в пределах 220 — 330 Ом. Как правило, кварцевые фильтры, изготовленные на распространенных ПАЛовских кварцевых резонаторах на частоту 8,867 МГц, удовлетворяют этому требованию.
С основной платой можно использовать любой ГПД или синтезатор частоты, работающий на соответствующих частотах и формирующий требуемое напряжение выходного сигнала. Не следует подавать на смеситель напряжение более 1,2 — 1,5 В, т.к. это приведет к росту собственных шумов тракта. Тем не менее, если используемый ГПД имеет достаточную мощность, то в первом смесителе можно установить по два последовательно включенных диода в плече. В этом случае можно ожидать некоторого увеличения динамического диапазона (на несколько децибел) в режиме приема, а также можно увеличить уровень выходного сигнала в режиме передачи — до 200 — 250 мВ вместо 100 — 150 мВ со смесителем, в котором установлено по одному диоду в каждом плече.
Диапазонные полосовые фильтры с входным и выходным сопротивлением 50 Ом можно применять любые — как самодельные, так и промышленные. В авторском варианте используются самодельные ДПФ от трансивера RA3AO.
Особо хочу отметить, что в режиме приема следует подобрать оптимальный уровень сигнала с ОГ, ориентируясь на наилучшее соотношение сигнал/шум на выходе тракта. Уровень выходного сигнала ОГ во многом определяется добротностью кварцевого резонатора ZQ3. Оптимальный уровень можно установить подбором емкости конденсатора С20 в пределах 47 — 100 пФ и/или сопротивления резистора R23 (330 — 750 Ом).
Микрофонный усилитель на транзисторах VT7 и VT8 требуется только при использовании динамического микрофона. Если трансивер будет работать с электретным микрофоном, имеющим ЭДС 100 мВ и более, то достаточно установить только эмиттерный повторитель, изготовив его по любой из известных схем.
На низких (читай — звуковых) частотах гораздо легче получить большой коэффициент усиления (как, например, в приемниках прямого преобразования). Коэффициент усиления УНЧ на микросхеме LM368 может достигать свыше 70 дБ! Для того чтобы убрать излишек усиления («белый шум»), установлен подстроенный резистор R29.
Если на базе этого тракта предполагается изготовить трансивер на НЧ диапазоны, то напряжение питания реверсивных каскадов желательно уменьшить до +6 В, заменив интегральный стабилизатор 78L09 на 78L06.
При разработке самодельного многодиапазонного KB трансивера ставилась задача создать простой универсальный приемо-передающий тракт, имеющий минимальную коммутацию цепей в режимах приема и передачи и обеспечивающий отличную повторяемость, а значит, с минимумом настроечных элементов. Предлагаемая вниманию читателей схема основного тракта рассчитана на начинающих радиолюбителей, не имеющих, как правило, сложных и дорогих контрольно-измерительных приборов. Собрать ее можно практически из того, что «лежит под руками». Опытный радиолюбитель может по своему усмотрению добавить в схему необходимые узлы и сделать маленький легкий трансивер для работы в эфире с дачи или в походе.
Несколько слов о самих реверсивных каскадах. Режимы транзисторов устанавливаются автоматически, и при исправных деталях каскады в настройке не нуждаются. При напряжении питания +6 В коэффициент усиления такого каскада составляет 17 — 18дБ, при +9В — +20 дБ, при 12 В — +23 — 24 дБ. При этом за счет глубоких обратных связей каскад работает очень устойчиво, а коэффициент усиления слабо зависит от типа применяемых транзисторов. Первые эксперименты проводились на парах транзисторов КТ315 и КТ361, но, руководствуясь желанием получить в режиме приема максимально достижимые шумовые характеристики тракта, я отдал предпочтение транзисторам КТ368. Транзисторы структуры р-п-р, работающие в режиме передачи, могут быть любыми из серий КТ363, КТ326, КТ3107.
Как видно из схемы, все три каскада идентичны, за исключением каскада на VT5 и VT6, в котором отсутствует конденсатор в эмиттерной цепи транзистора VT5. Это сделано для снижения коэффициента усиления в режиме передачи, что позволяет избежать перегрузки последующих каскадов и смесителя.
Транзистор КП501 в системе АРУ можно заменить импортным 2N7000. В качестве индикатора S-метра хорошо подходит измерительная головка от старого кассетного магнитофона.
Диоды для смесителей желательно подобрать по прямому сопротивлению. Безусловно, наилучшие результаты получатся в том случае, если применить диоды, специально разработанные для смесителей и подобранные в «четверки» (например, КД922АГ). Однако если этих диодов нет, не надо отчаиваться — в схеме будут неплохо работать даже КД521.
Широкополосные трансформаторы Т1, Т2 и Т8 намотаны на кольцах К7х4х2 проницаемостью 600 — 1000НН тремя слегка скрученными проводами (2-3 скрутки на сантиметр) ПЭВ диаметром 0,15 — 0,17 мм и имеют 15 —18 витков. Трансформатор балансного модулятора Т7 должен иметь достаточную индуктивность для сигналов звуковых частот, поэтому его нужно намотать на кольце К10x6x5 проницаемостью не ниже 1000HH такой же скруткой проводов (в один слой) до заполнения кольца. Особое внимание следует обратить на симметричность выполнения обмоток всех трансформаторов — от этого зависит качество балансировки смесителей.
Трансформаторы ТЗ — Т6 намотаны на кольцах К7х4х2 проницаемостью 600 — 1000НН двойным скрученным (2-3 скрутки на сантиметр) проводом ПЭВ диаметром 0,15 — 0,17 мм и имеют 15 —18 витков, включенных согласно-последо-вательно (начало одной обмотки соединяется с концом другой, образуя средний вывод).
Катушка L1, используемая для подстройки частоты ОГ, имеет 25 витков провода ПЭЛ-0,1, намотанного на каркасе 05 мм с подстроенным сердечником от СБ9 с резьбой МЗ, и помещена в экран.
Реле К1 — КЗ желательно применить малогабаритные (например, РЭС49 или РЭК23).
С основной платой можно использовать любой ГПД или синтезатор частоты, работающий на соответствующих частотах и формирующий требуемое напряжение выходного сигнала. Не следует подавать на смеситель напряжение более 1,2 — 1,5 В, т.к. это приведет к росту собственных шумов тракта. Тем не менее, если используемый ГПД имеет достаточную мощность, то в первом смесителе можно установить по два последовательно включенных диода в плече. В этом случае можно ожидать некоторого увеличения динамического диапазона (на несколько децибел) в режиме приема, а также можно увеличить уровень выходного сигнала в режиме передачи — до 200 — 250 мВ вместо 100 — 150 мВ со смесителем, в котором установлено по одному диоду в каждом плече.
Диапазонные полосовые фильтры с входным и выходным сопротивлением 50 Ом можно применять любые — как самодельные, так и промышленные. В авторском варианте используются самодельные ДПФ от трансивера RA3AO.
Особо хочу отметить, что в режиме приема следует подобрать оптимальный уровень сигнала с ОГ, ориентируясь на наилучшее соотношение сигнал/шум на выходе тракта. Уровень выходного сигнала ОГ во многом определяется добротностью кварцевого резонатора ZQ3. Оптимальный уровень можно установить подбором емкости конденсатора С20 в пределах 47 — 100 пФ и/или сопротивления резистора R23 (330 — 750 Ом).
Микрофонный усилитель на транзисторах VT7 и VT8 требуется только при использовании динамического микрофона. Если трансивер будет работать с электретным микрофоном, имеющим ЭДС 100 мВ и более, то достаточно установить только эмиттерный повторитель, изготовив его по любой из известных схем.
На низких (читай — звуковых) частотах гораздо легче получить большой коэффициент усиления (как, например, в приемниках прямого преобразования). Коэффициент усиления УНЧ на микросхеме LM368 может достигать свыше 70 дБ! Для того чтобы убрать излишек усиления («белый шум»), установлен подстроенный резистор R29.
Если на базе этого тракта предполагается изготовить трансивер на НЧ диапазоны, то напряжение питания реверсивных каскадов желательно уменьшить до +6 В, заменив интегральный стабилизатор 78L09 на 78L06.
В заключении отмечу, что за год работы на трансивере, выполненном на базе приведенных схем, сработано свыше 160 стран по списку DXCC и получено более 210 дипломов
Вариации на тему «Клопика» от автора
И несколько вариантов печатных плат от радиолюбителей. Желательно проверить разводку дорожек.