Трансивер 433 мгц своими руками

Содержание

Приставка для диапазона 433 мГц

Хочу рассказать о своей самоделке. Я занимаюсь системами радиосигнализации, радиоуправления, передачи данных и радиосвязи. Для ремонта и проверки передатчиков радиосигнализации, телеметрии и радиосвязи диапазона 433 мГц изготовил это устройство.

1566020468 foto 01

Устройство представляет собой детекторный приёмник, настроенный на диапазон 433 мГц.

Рассмотрим принципиальную схему. Она очень проста и не требует источника питания.

1566020582 shema

Колебательный контур состоит из катушки L1 и подстроечного конденсатора C1. Контур настроен на частоту 433 мГц. Катушка одновременно выполняет роль приёмной антенны.

Контур достаточно широкополосен, поэтому берёт все каналы данного диапазона.

Применение германиевого диода обусловлено его свойством детектировать более слабые по амплитуде сигналы, чем может кремниевый.

Демодулированный сигнал воспроизводится наушником, на основании этого и показаний вольтметра и осциллографа, можно определить работоспособность проверяемого передатчика. А именно, понять излучает он или нет. Есть ли модуляция несущей ( определяются только амплитудная и импульсная).

Необходимо учитывать, что передатчики могут иметь различные виды модуляции. Если это амплитудная (АМ) или импульсная (ИМ), сигнал можно услышать в наушнике и увидеть на экране осциллографа. Если модуляция частотная (ЧМ), фазовая (ФМ) или просто немодулированная несущая, тогда наушник сигнал не воспроизведёт. Определить наличие сигнала на частотах диапазона 433 мГц можно будет подключив к выходу приставки вольтметр постоянного напряжения или осциллограф в режиме с открытым входом ( показывает постоянную составляющую).

1566020711 foto 02

Катушка выполнена из медного эмалированного или посеребрённого провода диаметром 1–2 мм. Её форма и размеры в миллиметрах показаны на рисунке.

1566020616 katushka

Диод VD1 можно заменить на ГД507А, 1Д508А, ГД508А.

Подстроечный конденсатор – любой малогабаритный. При его монтаже на плату, желательно вывод, соединённый с ротором, припаять к нижнему по схеме (минусовому) проводу.

Конденсатор C2 – керамический.

1566020727 foto 03

При сборке конструкции все выводы деталей на плате делают короткими. Наушник соединяется с платой любым многожильным проводом.

Необходимо предусмотреть удобное крепление наушника на голове, чтобы обе руки были свободны. Автор применил готовые наушники, использовав один из ник.

Настроенную плату можно поместить в неметаллический корпус.

Источник

Ардуино: радиомодуль на 433 МГц

На этом уроке мы решим задачу по передаче радиосигнала между двумя контроллерами Ардуино с помощью популярного приемопередатчика с частотой 433МГц.

На самом деле, устройство по передаче данных состоит из двух модулей: приемника и передатчика. Данные можно передавать только в одном направлении. Это важно понимать при использовании этих модулей.

RD RF5 433

Например, можно сделать дистанционное управление любым электронным устройством, будь то мобильный робот или, например, телевизор. В этом случае данные будут передаваться от пульта управления к устройству. Другой вариант — передача сигналов с беспроводных датчиков на систему сбора данных. Здесь уже маршрут меняется, теперь передатчик стоит на стороне датчика, а приемник на стороне системы сбора.

Модули могут иметь разные названия: MX-05V, XD-RF-5V, XY-FST, XY-MK-5V, и т.п., но все они имеют примерно одинаковый внешний вид и нумерацию контактов. Также, распространены две частоты радиомодулей: 433 МГц и 315 МГц.

Подключение

Передатчик имеет всего три вывода: Gnd, Vcc и Data.

transmitter 433 pinouts

Подключаем их к первой плате Ардуино по схеме:

Передатчик MX-05V 433МГц GND VCC Data
Ардуино Уно №1 GND +5V 2

У приемника четыре вывода, но один не используется.

receiver 433 pinouts

Схема подключения ко второй плате Ардуино идентична первой:

Приемник XD-RF-5V 433МГц GND VCC Data
Ардуино Уно №2 GND +5V 2

Собираем оба устройства на макетной плате и приступаем к написанию программ.

arduino receiver transmitter 433 1024

Программа для передатчика

Для работы с радиомодулями воспользуемся библиотекой RCSwitch. Напишем программу, которая будет каждую секунду по-очереди отправлять два разных сообщения.

Разберем программу. Первое что мы сделали — объявили объект для работы с передатчиком и назвали его mySwitch.

Затем, внутри стандартной функции setup включили передатчик и указали вывод, к которому он подключен:

Наконец, в основном цикле программы loop отправляем сначала одно сообщение, а затем и второе с помощью функции send:

Функция send имеет два аргумента. Первый — это отправляемое сообщение, которое будет отправляться в эфир в виде пачки импульсов. Второй аргумент — это размер отправляемой пачки.

В нашей программе мы указали сообщения в формате двоичного числа. На это указывает английская буква «B» в начале кода B1000. В десятеричном представлении это число превратится в восьмерку. Так что мы могли вызвать функцию send так:

Также send умеет принимать двоичные строки:

Программа для приемника

Теперь напишем программу для приемника. Для демонстрации факта передачи мы будем зажигать светодиод, подключенный к выводу №3 на плате Ардуино. Если приемник поймал код B1000 — включим светодиод, а если B0100 — выключим.

Функция available возвращает истину, если передатчик принял хоть какие-то данные:

Функция getReceivedValue извлекает из потока данных одну пачку и декодирует её в число. В программе мы присваиваем полученное число переменной value:

Задания

Теперь можно попробовать потренироваться и сделать разные полезные устройства. Вот несколько идей.

Заключение

Итак, теперь мы знаем простой и недорогой способ передавать данные на расстоянии. К сожалению, скорость передачи и дистанция в таких радиомодулях весьма ограничены, так что мы не сможем полноценно управлять, например квадрокоптером. Однако, сделать радиопульт для управления простым бытовым прибором: светильником, вентилятором или телевизором, нам под силу.

На основе приемопередатчиков с частотой 433 МГц и 315 МГц работает большинство радиоканальных пультов управления. Имея Ардуино и приемник, мы можем декодировать сигналы управления и повторить их. Подробнее о том, как это сделать мы напишем в одном из следующих уроков!

Чтобы передавать много данных с большой скоростью и на большие расстояния рекомендуем использовать цифровые приемопередатчики: nrf24l01, тот же bluetooth, wi-fi или LoraWAN.

Источник

Радиомодули 433MHz RF Tx-Rx. Взаимодействие с Ардуино

Хотите добавить беспроводные возможности в ваш следующий проект Arduino, причем за меньшую цену, чем чашка кофе? Что ж, тогда модули передатчика и приемника 433 МГц для вас!

Их можно купить в интернете менее чем за два доллара за пару, что делает их одним из самых недорогих вариантов передачи данных, которые вы можете получить. И что самое приятное, эти модули очень крошечные, что позволяет использовать беспроводной интерфейс практически в любом проекте.

Обзор оборудования

Давайте подробнее рассмотрим модули передатчика и приемника 433 МГц.

3 image

radiomoduli 433mhz rf tx rx vzaimodejstvie s arduino 1

Этот маленький модуль является передатчиком. Сердцем модуля является резонатор SAW, настроенный на работу в диапазоне 433.xx МГц. Есть переключающий транзистор и несколько пассивных компонентов, вот и все.

Когда на вход DATA поступает логическая 1, генератор начинает работать, генерируя постоянную РЧ несущую волну на частоте 433.xx МГц, а когда на входе DATA устанавливается логический 0, генератор останавливается. Этот метод известен как Amplitude Shift Keying, о котором мы вскоре поговорим подробнее.

radiomoduli 433mhz rf tx rx vzaimodejstvie s arduino 2Это приемный модуль. Хотя все выглядит сложным, но он так же просто, как модуль передатчика. Он состоит из радиочастотной схемы и пары операционных усилителей для усиления принимаемой несущей от передатчика. Усиленный сигнал подается на ФАПЧ (фазовая автоподстройка частоты), которая позволяет декодеру «выделить» поток цифровых битов, что обеспечивает лучшее декодирование и помехоустойчивость.

ASK — Amplitude Shift Keying

Как обсуждалось выше, для отправки цифровых данных по радиоканалу, эти модули используют технику, называемую Amplitude Shift Keying или ASK (амплитудная модуляция). Это когда амплитуда (то есть уровень) несущей волны (в нашем случае это сигнал 433 МГц) изменяется в ответ на входящий сигнал данных.

Это очень похоже на аналоговую технику амплитудной модуляции, с которой вы, возможно, знакомы, если вы собирали AM-радио. Иногда это называется двоичной амплитудной манипуляцией, потому что нам необходимо только два уровня. Вы можете представить это как переключатель ВКЛ / ВЫКЛ.

radiomoduli 433mhz rf tx rx vzaimodejstvie s arduino 3

Амплитудная модуляция имеет преимущество в том, что она очень проста в реализации. На ее основе довольно просто спроектировать схему декодера. Также для ASK требуется меньшая полоса пропускания, чем другим методам модуляции, таким как FSK (частотная модуляция). Это одна из причин того дешевизны модулей.

Однако недостатком является то, что амплитудная модуляция подвержена помехам от других радиоустройств и фоновому шуму. Но пока вы обеспечиваете передачу данных на относительно медленной скорости, она может надежно работать в большинстве сред.

Распиновка передатчика и приемника 433 МГц

Давайте посмотрим на распиновку модулей передатчика и приемника RF 433 МГц.

radiomoduli 433mhz rf tx rx vzaimodejstvie s arduino 4

radiomoduli 433mhz rf tx rx vzaimodejstvie s arduino 5

Схема подключения передатчика и приемника 433 МГц к Arduino UNO

Теперь, когда мы знаем все о модулях, пришло время использовать их!

Поскольку мы будем передавать данные между двумя платами Arduino, нам, конечно, понадобятся две платы Arduino, две макетные платы и пара соединительных проводов.

Схема для передатчика довольно проста. У него всего три соединения. Подключите контакт VCC к контакту 5 В и минус к Arduino. Контакт Data-In должен быть подключен к цифровому контакту Arduino № 12. Вы должны использовать контакт 12, так как по умолчанию библиотека, которую мы будем использовать в нашем скетче, использует этот контакт для ввода данных.

На следующем рисунке показана схема соединения.

radiomoduli 433mhz rf tx rx vzaimodejstvie s arduino 6

После подключения передатчика вы можете перейти к приемнику. Подключение приемника так же просто, как и передатчика.

Так же нужно сделать только три соединения. Подключите контакт VCC к контакту 5 В и минус на Arduino. Любой из двух средних выводов Data-Out должен быть подключен к цифровому выводу № 11 на Arduino.

Вот так должна выглядеть схема соединения для приемника.

radiomoduli 433mhz rf tx rx vzaimodejstvie s arduino 7

Теперь, когда передатчик и приемник подключены, нам нужно написать код и отправить его на соответствующие платы Arduino. Поскольку у вас, вероятно, только один компьютер, мы начнем с передатчика. Как только код будет загружен, мы перейдем к приемнику. Arduino, к которому подключен передатчик, может питаться от источника питания или батареи.

RadioHead Library — универсальная библиотека для беспроводных модулей

Прежде чем мы начнем программировать, установим библиотеку RadioHead в Arduino IDE.

RadioHead — это библиотека, которая позволяет легко передавать данные между платами Arduino. Она настолько универсальна, что ее можно использовать для управления всеми видами устройств радиосвязи, включая наши модули на 433 МГц.

Библиотека RadioHead собирает наши данные, инкапсулирует их в пакет данных, который включает в себя CRC (проверку циклически избыточного кода), а затем отправляет его с необходимой преамбулой и заголовком на другую Arduino. Если данные получены правильно, принимающая плата Arduino проинформирует о наличии доступных данных и приступит к их декодированию и выполнению.

Пакет RadioHead формируется следующим образом: 36-битный поток из пар «1» и «0», называемый «обучающей преамбулой», отправляется в начале каждой передачи. Эти биты необходимы приемнику для регулировки его усиления до получения фактических данных. Затем следует 12-битный «Начальный символ», а затем фактические данные (полезная нагрузка).

Последовательность проверки или CRC добавляется в конец пакета, который пересчитывается RadioHead на стороне приемника, и если проверка CRC верна, приемное устройство получает предупреждение. Если проверка CRC не пройдена, пакет отбрасывается.

Весь пакет выглядит примерно так:

radiomoduli 433mhz rf tx rx vzaimodejstvie s arduino 8

Скетч Arduino для радиочастотного передатчика 433 МГц

В нашем эксперименте мы отправим простое текстовое сообщение от передатчика к получателю. Будет полезно понять, как использовать модули, и это может послужить основой для более практических экспериментов и проектов.

Вот скетч, который мы будем использовать для нашего передатчика:

Это довольно короткий набросок, но это все, что вам нужно для передачи сигнала.

Код начинается с подключением библиотеки RadioHead ASK. Мы также должны подключить библиотеку SPI Arduino, так как от нее зависит библиотека RadioHead.

Далее нам нужно создать объект ASK, чтобы получить доступ к специальным функциям, связанным с библиотекой RadioHead ASK.

В функции setup() нам нужно инициализировать объект ASK.

В функции loop() мы начинаем с подготовку сообщения. Это простая текстовая строка, которая хранится в char с именем msg. Знайте, что ваше сообщение может быть любым, но не должно превышать 27 символов для лучшей производительности. И обязательно посчитайте количество символов в нем, так как вам понадобится это количество в коде получателя. В нашем случае у нас 11 символов.

Затем сообщение передается с использованием функции send(). Он имеет два параметра: первый — это массив данных, а второй — количество байтов (длина данных), подлежащих отправке. За send() функцией обычно следует waitPacketSent() функция, которая ожидает завершения передачи любого предыдущего передаваемого пакета. После этого код ждет секунду, чтобы дать нашему приемнику время разобраться во всем.

Скетч Arduino для радиочастотного приемника 433 МГц

Подключите приемник Arduino к компьютеру и загрузите следующий код:

Как и код передатчика, код приемника начинается с подключения библиотек RadioHead и SPI и создания объекта ASK.

В setup() мы инициализируем объект ASK, а также настраиваем последовательный монитор, так как мы будем просматривать наше полученное сообщение.

В функции loop() мы создаем буфер размером передаваемого сообщения. В нашем случае это 11, помните? Вам нужно будет настроить это, чтобы соответствовать длине вашего сообщения. Обязательно укажите все пробелы и знаки препинания, поскольку все они считаются символами.

Далее мы вызываем функцию recv(). Это включает приемник, если он еще не включен. Если доступно сообщение, оно копирует сообщение в свой первый буфер параметров и возвращает true, иначе возвращает false. Если функция возвращает true, код вводит оператор if и печатает полученное сообщение на мониторе последовательного порта.

Затем мы возвращаемся к началу цикла и делаем все заново.

После загрузки скетча откройте серийный монитор. Если все в порядке, вы должны увидеть ваше сообщение.

radiomoduli 433mhz rf tx rx vzaimodejstvie s arduino 9

Увеличение дальности радиочастотных модулей 433 МГц

Антенна, которую вы используете как для передатчика, так и для приемника, может реально повлиять на дальность передачи, которую вы сможете получить с помощью этих радиочастотных модулей. На самом деле без антенны вы сможете общаться на расстоянии не более метра.

При правильной конструкции антенны вы сможете общаться на расстоянии до 50 метров. Конечно, это на открытом пространстве. Ваш диапазон в помещении, особенно через стены, будет слегка ослаблен.

Антенна не должна быть сложной. Простой кусок одножильного провода может послужить отличной антеной для передатчика и приемника. Диаметр антенны вряд ли имеет какое-либо значение, если длина антенны правильная.

Самая эффективная антенна имеет ту же длину, что и длина волны, для которой она используется. Для практических целей достаточно половины или четверти этой длины.

Длина волны частоты рассчитывается как:

Длина волны = скорость распространения (v) / частота (f)

В воздухе скорость передачи равна скорости света, которая, если быть точным, составляет 299 792 458 м/с. Итак, для частоты 433 МГц длина волны равна:

Длина волны = 299 792 458 м/с / 433 000 000 Гц = 0,6924 м

Полноволновая антенна длиной 69,24 см довольно длинная, ее использование не очень удобно. Вот почему мы выберем четвертьволновую антенну, длина которой составляет 17,3 см.

На всякий случай, если вы экспериментируете с другими радиопередатчиками, которые используют разные частоты, вы можете использовать ту же формулу для расчета необходимой длины антенны. Довольно просто, верно?

Даже 17,3 см антенна может показаться неудобной в вашем крошечном проекте Arduino. Но НЕ соблазняйтесь наматывать антенну, чтобы сделать ее более компактной, так как это серьезно повлияет на дальность действия. Прямая антенна всегда лучше!

Источник

Схемы самодельных трансиверов – ТОП-3, печатные платы, видео

Простой, самодельный трансивер: схема и монтаж своими руками

Слово трансивер у многих начинающих радиолюбителей ассоциируется со сложнейшим устройством. Но есть схемы, которые имея всего 4 транзистора, способны в телеграфном режиме обеспечить связь на сотни километров.

Изначально представленная ниже принципиальная схема трансивера была рассчитана под высокоомные наушники. Пришлось немного переделать усилитель, чтоб была возможность работать и с низкоомными наушниками 32 Ом.

Принципиальная схема простого трансивера на 80м

1551543479 foto 1

Моточные данные контура:

1551543492 foto 2

1551543441 foto 3

Как настроить трансивер?

В особо сложной настройке приёмопередатчик не нуждается. Всё просто и доступно:

Начинаем с УНЧ, подбором резистора R5 устанавливаем на коллекторе транзистора + 2В и проверяем работоспособность усилителя, коснувшись пинцетом входа — в наушниках при этом должен прослушиваться фон.

Затем переходим к настройке кварцевого генератора, убеждаемся, что генерация идет (это можно сделать с помощью частотомера или осциллографа снимая сигнал с эмиттера vt1).

Следующий этап — это настройка трансивера на передачу. Вместо антенны вешаем эквивалент — резистор 50 Ом 1 Вт. Параллельно ему подключаем ВЧ вольтметр, при этом включаем трансивер на передачу (нажатием ключа), начинаем вращать сердечник катушки L2 по показаниям ВЧ вольтметра и добиваемся резонанса.

Вот в принципе и все! Не следует ставить мощный выходной транзистор, с прибавкой мощности появляются всевозможные свисты и возбуждения. Этот транзистор играет две роли — как смеситель при приеме и как усилитель мощности при передаче, так что кт603 здесь за глаза будет.

1551543432 foto 4

Так как рабочие частоты всего несколько мегагерц, можно применить любые ВЧ транзисторы соответственной структуры.

Печатную плату можно скачать ниже:

КВ трансивер на 28 МГц с мощностью передатчика 0,4 Вт

Рассмотрим подробно принципиальную схему самодельного коротковолнового трансивера на диапазон частот 28 МГц, с выходной мощностью передатчика 400 милливат.

Принципиальная схема трансивера

1551543456 foto 5

Приемник трансивера является обычным сверхрегенеративным детектором. Единственной его особенностью можно считать переменный резистор R11, который облегчает настройку. При желании его можно вынести на лицевую панель трансивера.

Чувствительность приемника повышена за счет применения в усилителе 34 микросхемы К174УН4Б, которая при питании от батареи напряжением 4,5 В развивает мощность 400 мВт.

Цепь громкоговорителя соединена с минусом источника питания, что позволило упростить коммутацию с цепью микрофона и использовать спаренную кнопку, которой в режиме передачи отключаются громкоговоритель и питание приемника, а в режиме приема подключаются микрофон и питание передатчика. На схеме кнопка SA1 показана в положении приема.

Детали и конструкция КВ трансивера

В трансивере применены резисторы МЛТ-0,125 и конденсаторы К50-6.

Транзистор VT1 можно заменить на ГТ311Ж, КТ312В, а транзисторы VT2, VT3 — на ГТ308В, П403. Условия замены транзисторов следующие: VT1 должен иметь как можно больший коэффициент усиления на граничной частоте, а транзисторы VT2 и VT3 — иметь одинаковый коэффициент передачи тока.

Контурные катушки L1 и L2 намотаны на каркасах диаметром 5 мм. Они имеют подстроенные сердечники из карбонильного железа диаметром 3,5 мм. Катушки заключены в экраны размером 12x12x17 мм.

Экран катушки L1 соединен с минусом батареи питания, a L2 — с плюсом. Обе катушки намотаны проводом ПЭВ диаметром 0,5 мм и имеют по 10 витков каждая.

При изготовлении катушек L1 и L2 можно использовать контуры от тракта ПЧ телевизоров. Именно такой же каркас длиной 25 мм и диаметром 7,5 мм используется при изготовлении катушек L3 и L4. На плате они располагается горизонтально.

Намотка катушки L3 ведется с шагом 1 мм, катушка имеет 4 + 4 витка провода ПЭВ диаметром 0,5 мм с отводом от середины, расстояние между половинами обмотки — 2,5 мм.

Катушка L4 содержит 4 витка того же провода, мотается виток к витку и расположена между половинами обмотки катушки L3. Дроссели L5 и L6 намотаны на резисторах промышленного изготовления от трактов ПЧ старых телевизоров.

Громкоговоритель можно применить любой с сопротивлением 8 Ом. Подойдут громкоговорители типа 0ДГД-8, 0ДГД-6; 0,25ГДШ-3.

Трансформатор Т1 наматывается на любом малогабаритном магнитопроводе, например, типа ШЗхб, и содержит в первичной обмотке 400 витков провода ПЭВ диаметром 0,23 мм, во вторичной — 200 витков того же провода.

Налаживание

Настраивать трансивер необходимо с УЗЧ. Отпаяв резистор R5, в разрыв цепи SA2 подключают миллиамперметр. Ток в режиме покоя не должен превышать 5 мА.

При касании отверткой точки А в громкоговорителе должен появляться шум. Если усилитель самовозбуждается, то сопротивление резистора R4 необходимо повышать до 1,5 кОм, но при этом помнить, что чем выше номинал резистора, тем ниже чувствительность усилителя.

Далее, подключив обратно R5, измеряют общий ток УЗЧ и сверхрегенеративного детектора. Он равен 10–15 мА, при этом из динамика должен быть слышен звук в виде шипящего шума.

Если шума нет, необходимо перемещать движок резистора R11 из верхнего (по схеме) положения в нижнее. Должен появиться громкий устойчивый шум, что говорит о хорошей работе сверхрегенеративнного детектора.

Дальнейшая настройка приемника производится только после настройки передатчика и заключается в подгонке емкости конденсатора С5 (грубая настройка) и индуктивности L1 (точная настройка) к режиму наилучшего приема сигнала передатчика.

При настройке передатчика необходимо в разрыв цепи «х» включить миллиамперметр и величину сопротивления R6 подобрать такой, чтобы ток в этой цепи был равен 40–50 мА.

Затем надо подключить миллиамперметр с пределом измерения 50 мкА к плюсовой шине передатчика, а другой конец прибора через диод и конденсатор 1(>—20 пФ — к антенне.

Подстройка элементов L3, L4, С17, L2 и С18 ведется до максимального отклонения стрелки прибора. Причем грубо настраивают конденсаторами, а точнее — сердечниками контуров.

Подстрочник катушки L3–L4 должен находиться не далее ±3 мм от среднего положения, так как в крайних его точках может срываться генерация из-за нарушения симметрии плеч транзисторов VT2 и VT3.

Настраивая при выдвинутой антенне L2 и С18 по максимальному отклонению стрелки прибора, необходимо добиться полного согласования антенны и передатчика.

Если при включении передатчика внезапно срывается генерация, то это свидетельствует о неправильной настройке. В таком случае необходимо снова подобрать режимы работы VT2 и VT3, тщательно настроить L2, L3, L4, а если это не поможет, то подобрать транзисторы с более близкими параметрами.

Двухдиапазонный лампово-полупроводниковый трансивер

Этот трансивер можно выполнить на любой диапазон от 1.8 до 10 МГц и увеличить мощность, если сильно надо. Он построен по схеме с «одним преобразованием».

Частота ПЧ = 5,25 МГц. Выбор частоты ПЧ обусловлен тем, что при частоте гетеродина 8,75–9,1 МГц перекрывается сразу два диапазона 3,5 и 14 МГц.

В этой схеме применен самодельный лестничный 7-ми кристальный кварцевый фильтр по схеме, предложенной Kirs Pinelis (YL2PU) в известном трансивере DM2002.

Оба диодных смесителя выполнены по классической схеме с применением трансформаторов с объемным витком связи.

Схема трансивера

1551543433 foto 6

Схема разработана на 5 пальчиковых лампах. Она включает регулируемый усилитель высокой и промежуточной частоты, балансный смеситель и гетеродин. Пройдем по схеме по порядку.

В режиме приема сигнал через полосовые фильтры L1–L2 подается на УВЧ, выполненный на лампе 6К13П. Далее он подается на первый смеситель тракта, выполненный по кольцевой схеме. На один из входов смесителя подается сигнал с первого гетеродина. Полученный сигнал промежуточной частоты подается на кварцевый фильтр, через согласующий контур.

Данная схема согласования позволяет несколько уменьшить потери на участке первый смеситель — УПЧ. Затем сигнал ПЧ усиливается в реверсивном усилителе на лампе 6Ж9П. Усиленный сигнал, выделяясь на контуре L5, подается на второй смеситель тракта, выполненный по кольцевой схеме, выполняющий роль детектора SSB сигнала.

НЧ — сигнал выделяется на RC-цепочке и подается на пентодную часть 6Ф12П, выполняющую роль предварительного УНЧ. Триодная часть в режиме приема выполняет роль катодного повторителя для системы АРУ. УМ УНЧ (он же УМ передатчика) выполнен на пентоде 6П15П.

В режиме передачи все каскады приемника реверсируются с помощью реле РЭС-15 с паспортом 004 (лучше применить более надежные реле). Переключение режимов прием/передача осуществляется переключателем PTT.

Особенности подбора компонентов

Дроссели применены обычные Д-0,1.

Трансформаторы ТР1–ТР3 выполнены на ферритовых кольцах 1000НН внешним диаметром 10–12 мм и содержат 15 витков скрученного втрое (для ТР1 и ТР2) провода ПЭЛ-0,2 и вдвое для ТР3.

Звуковой (выходной) трансформатор любой с коэффициентом трансформации от 2,5 кОм до 8 Ом. Силовой трансформатор применен с габаритной мощностью 70 Вт.

Катушки L1–L3 намотаны проводом ПЭЛ-0,25 и содержат по 30 витков. Катушки L4–L5 содержат по 55 витков ПЭЛ-0,1, все катушки связи намотаны проводом ПЭЛШО 0,3 на бумажных гильзах поверх соответствующих контурных катушек, а количество витков выражено на схеме соотношением для каждого случая.

Катушка L6 имеет 60 витков проводом 0,1 (для всех контуров возможно использовать каркасы от контуров ПЧ ламповых телевизоров серии УНТ).

Катушка ГПД применена от приемника Р–326, при самостоятельном изготовлении (что очень трудоемко) выполняется на 18 мм керамическом каркасе проводом ПЭЛ 0,8 15 витков с шагом 0,5 мм. Отводы от 3 и 11 витков с (холодного) конца. Катушка П-контура выполнена на каркасе диаметром 30 мм и имеет 26 витков провода ПЭЛ 0,8, отвод для 14 МГц подбирается экспериментально.

Настройка лампового трансивера

Далее переходим в режим передачи. Переменным резистором «баланс» устанавливаем минимум напряжения несущей после смесителя (используем осциллограф или милливольтметр). Затем с помощью контрольного приемника регулируем переменный резистор 22 кОм до получения качественной модуляции.

Настройка генератора плавного диапазона

Следует убедиться, что ГПД генерирует высокочастотные колебания. Здесь могут быть полезны частотомер (цифровая шкала) и осциллограф.

Далее, при работающем пока на произвольной частоте ГПД, измеряют ток через стабилитрон (КС930А). Он должен быть около 15–17 мА. В противном случае подбирается двухватный резистор 2 кОм.

Застабилизировав напряжение, питающее генератор плавного диапазона, переходят к его настройке. Ее следует начать с внешнего осмотра ГПД в ходе которого необходимо убедиться, что все конденсаторы применены типа СГМ группы «Г». Это очень важно, так как их нестабильность емкости или температурного коэффициента будет отражаться на общей стабильности частоты генератора.

Требования к качеству контурной катушки ГПД общеизвестны. Это одна из важнейших деталей аппарата. Никаких катушек сомнительного качества здесь применять нельзя! Очень ответственно следует отнестись к подбору конденсаторов, составляющих контур ГПД. Это конденсаторы типа КТ, один — красного или голубого цвета, а другой — синего. Соотношение их емкостей, дающих суммарную емкость в 100 пФ, подбирается с применением способа нагрева монтажа и шасси, о чем будет ниже.

Приступают к укладке границ частот, генерируемых генератором плавного диапазона. В рамках этой работы, добиваются чтобы при полностью введенных пластинах конденсатора переменной емкости (КПЕ), ГПД генерировал частоту примерно 8,75 МГц. Если она окажется ниже, емкость конденсаторов необходимо несколько уменьшить, если выше — увеличить. Первоначально при подборе этой емкости обращают относительное внимание и на соотношение цветов, составляющих ее конденсаторов.

При полностью выведенных пластинах КПЕ (минимальная емкость), ГПД должен генерировать частоту близкую к 9,1 МГц. Частоту ГПД контролируют по частотомеру (цифровой шкале), подключенному к выводу для цифровой шкалы.

Завершив укладку частотного диапазона ГПД, приступают к термокомпенсации этого генератора, заключающейся в подборе соотношения емкостей конденсаторов красного и синего цветов, составляющих емкость контура. Эта работа производится при помощи упоминавшегося ранее частотомера, обеспечивающего точность измерения частоты не хуже 10 Гц. Перед работой с частотомером он должен быть хорошо прогрет.

Включается трансивер и прогревается 10–15 минут. Затем, используя настольную лампу, медленно разогревают детали и шасси ГПД. Причем разогревать лучше не их непосредственно, а участок, несколько удаленный от ГПД, находящийся, примерно, между ГПД и выходной генераторной лампой. При достижении в районе ГПД температуры 50–60 градусов, отмечают в какую сторону ушла частота ГПД. Если увеличилась — температурный коэффициент конденсаторов, составляющих контур, отрицательный и значителен по абсолютной величине. Если уменьшилась — коэффициент или положителен, или отрицателен, но мал по абсолютному значению.

Как уже упоминалось, применены конденсаторы типа КТ с различными зависимостями обратимого изменения емкости при изменении температуры. Конденсаторы с положительным ТКЕ (температурный коэффициент емкости) имеют синий или серый цвет корпуса. Нейтральный ТКЕ у голубых конденсаторов с черной меткой. Голубые конденсаторы с коричневой или красной меткой имеют умеренный отрицательный ТКЕ. И наконец, красный корпус конденсатора свидетельствует о значительном отрицательном ТКЕ.

Дав узлу полностью остыть, заменяют конденсаторы, изменив их температурный коэффициент в нужную сторону, сохранив прежней суммарную емкость. При этом следует постоянно проверять сохранность произведенной ранее укладки частот ГПД.

Эти операции следует повторять до тех пор, пока не будет достигнуто того, что при повышении температуры ГПД на 35–40 градусов будет вызываться сдвиг частоты ГПД не более чем на 1 кГц.

Это означает, что частота трансивера при его прогреве в процессе нормальной работы не будет уходить более чем на 100 Гц за 10–15 минут.

Дополнительную стабильность обеспечит ЦАПЧ примененной ЦШ (Макеевская).

Опорный кварцевый генератор выполнен транзисторе КТ315Г и в комментариях не нуждается. Выполнять его на дополнительной лампе нет смысла.

Описание готового трансивера, печатные платы, фото

Печатная плата трансивера — размер 225 на 215 мм:

1551543440 foto 7

1551543502 foto 8

Переднюю панель делаем следующим образом:

Вид полупроводниково-лампового трансивера внутри:

1551543438 foto 9

Внешний вид трансивера:

1551543484 foto 10

Видео о том, как собрать мини-трансивер на двух транзисторах своими руками:

Источник

Поделиться с друзьями
admin
Здоровая спина
Adblock
detector