Трансформатор согласующий звуковой своими руками

%D0%BB%D0%BE%D0%B3%D0%BE %D0%97%D0%9C

Hi-Fi и High-End техника или энциклопедия звука и видео

ЗВУКОМАНИЯ

Hi-Fi и High-End техника или энциклопедия звука и видео

Трансформатор для звуковой техники

Трансформатор для звуковой техники

%D0%A2%D1%80%D0%B0%D0%BD%D1%81%D1%84%D0%BE%D1%80%D0%BC%D0%B0%D1%82%D0%BE%D1%80 %D0%B4%D0%BB%D1%8F %D0%B7%D0%B2%D1%83%D0%BA%D0%BE%D0%B2%D0%BE%D0%B9 %D1%82%D0%B5%D1%85%D0%BD%D0%B8%D0%BA%D0%B8

Трансформатор для звуковой техники

Трансформатор для звуковой техники

Принцип работы трансформаторов основан на индукции: переменное напряжение (например, сетевое напряжение 230 В), приложенное к первичной обмотке трансформатора, индуцирует переменное напряжение с желаемым напряжением на вторичной обмотке — обычно с помощью сердечника трансформатора, сделанного из намагничивающийся материал. Обе обмотки, конечно, должны быть электрически изолированы друг от друга.

Идеальный трансформатор для звуковой техники

В идеальном трансформаторе без потерь вторичное напряжение складывается из первичного напряжения и соотношения количества витков первичной и вторичной обмоток друг к другу. Пример: первичное напряжение 230 вольт. N1 (количество витков первичной обмотки) — 1000. N2 (количество витков вторичной обмотки) — 500. Напряжение вторичной обмотки будет 230 В x 500/1000 = 115 В.

%D1%82%D1%80%D0%B0%D0%BD%D1%81%D1%84%D0%BE%D1%80%D0%BC%D0%B0%D1%82%D0%BE%D1%80 200%D0%92%D1%82 %D0%9A%D0%BB%D0%BE%D0%BD Naim NAP 200трансформатор 200Вт Клон Naim NAP 200

Из-за потерь на вихревые токи в сердечнике трансформатора, сопротивлений в обмотках и паразитных потерь (часть магнитной энергии от первичной обмотки рассеивается в окружающую среду) на практике не существует идеального трансформатора. Однако хороший трансформатор для звуковой техники не должен работать долго …

Такой идеальный трансформатор работает с минимальными потерями на холостом ходу и под нагрузкой.
Выполняет свою работу с минимальным количеством паразитных полей, чтобы как можно меньше влиять на соседние компоненты.
как можно меньше нарушает окружающую среду своими механическими вибрациями.

%D1%82%D1%80%D0%B0%D0%BD%D1%81%D1%84%D0%BE%D1%80%D0%BC%D0%B0%D1%82%D0%BE%D1%80%D1%8B 300%D0%92%D1%82 %D0%BA%D0%B0%D0%B6%D0%B4%D1%8B%D0%B9трансформаторы 300Вт каждый

Кроме того, в случае трансформаторов, окруженных фильтрами большей емкости (как это часто бывает с полными и оконечными усилителями), существует потребность в предоставлении очень высоких энергий в короткие сроки.

%D1%82%D1%80%D0%B0%D0%BD%D1%81%D1%84%D0%BE%D1%80%D0%BC%D0%B0%D1%82%D0%BE%D1%80 800%D0%92%D1%82 FM711 %D1%83%D1%81%D0%B8%D0%BB%D0%B8%D1%82%D0%B5%D0%BB%D1%8C %D0%B2%D0%BD%D1%83%D1%82%D1%80%D0%B8трансформатор 800Вт FM711 усилитель внутри

В конце концов, просеивающие мощности должны быть фазовыми. n переход к фазе запускать должен снова и снова — на что очень мало времени — дозаправляться. То, что это приводит к очень высоким пиковым токам, становится очевидным самое позднее, если учесть, что общая энергия, необходимая для работы усилителя, берется только из сети питания 230 В и преобразуется во время этих коротких процессов.

%D0%94%D0%B2%D0%B0 %D0%BC%D0%BE%D1%89%D0%BD%D1%8B%D1%85 %D1%82%D1%80%D0%B0%D0%BD%D1%81%D1%84%D0%BE%D1%80%D0%BC%D0%B0%D1%82%D0%BE%D1%80%D0%B0 %D0%BF%D0%BE 300%D0%92%D1%82 %D0%BA%D0%B0%D0%B6%D0%B4%D1%8B%D0%B9 %D0%BD%D0%B0%D0%BC%D0%BE%D1%82%D0%B0%D0%BD%D1%8B %D0%BF%D0%BE%D0%B4 %D0%B7%D0%B0%D0%BA%D0%B0%D0%B7Два мощных трансформатора по 300Вт каждый намотаны под заказ

Этот факт, а также тот факт, что музыкальные сигналы менее постоянны или могут также давать очень сильные импульсные пики, делает часто распространяемое «завышение размера» трансформаторов, используемых в компонентах Hi-Fi, более или менее простым обязательным упражнением.

Тороидальный трансформатор для звуковой техники

Конструкция с тороидальным сердечником особенно распространена в высококачественных Hi-Fi устройствах. Такой трансформатор основан на кольцевом сердечнике, который состоит из намотанного листа металлического листа в форме кольца или спирали с изолирующим слоем — сплошное кольцо приведет к чрезмерному потери на вихревые токи.

%D1%82%D1%80%D0%B0%D0%BD%D1%81%D1%84%D0%BE%D1%80%D0%BC%D0%B0%D1%82%D0%BE%D1%80%D1%8B %D1%83%D1%81%D0%B8%D0%BB%D0%B8%D1%82%D0%B5%D0%BB%D1%8C %D0%BC%D0%BE%D1%89%D0%BD%D0%BE%D1%81%D1%82%D0%B8трансформаторы усилитель мощности

Как первичная, так и вторичная обмотки намотаны вокруг этого кольца — сердечник может быть полностью охвачен обмотками в этой конструкции, или он будет меньше выступать наружу, чем в случае с другими конструкциями.

Это приводит к более низкому полю рассеивания, возможности меньшей массы сердечника (меньшим потерям на обратное магнитное поле), меньшему току холостого хода и, как следствие, более высокой степени эффективности — наконец, что не менее важно, в целом возможны более компактные конструкции.

%D0%A6%D0%90%D0%9F %E2%84%965 %D0%B2%D0%BD%D1%83%D1%82%D1%80%D0%B8ЦАП №5 внутри

Тороидальный трансформатор минусы

Однако намотка замкнутого кольца технически относительно сложна и, следовательно, более дорога: вы не можете избежать продевания проволоки катушки через отверстие, то есть в центр кольца, с каждым оборотом — корпус намотки также изогнут, что затрудняет намотку равномерно.

%D0%A0%D0%B5%D1%84%D0%B5%D1%80%D0%B5%D0%BD%D1%81%D0%BD%D1%8B%D0%B9 %D1%83%D1%81%D0%B8%D0%BB%D0%B8%D1%82%D0%B5%D0%BB%D1%8C %D1%82%D1%80%D0%B0%D0%BD%D1%81%D1%84%D0%BE%D1%80%D0%BC%D0%B0%D1%82%D0%BE%D1%80%D1%8B %D0%B3%D1%80%D1%83%D0%BF%D0%BF%D0%B0Референсный усилитель трансформаторы группа

В процессе эксплуатации к полю необходимо прикладывать более низкую пиковую нагрузочную способность (если вы хотите добиться низкой массы сердечника) и более высокие пусковые токи, что на практике может стать проблемой только в том случае, если производитель звукового устройства не сможет противодействовать этому обстоятельству с помощью адекватного тока.

%D0%A2%D1%80%D0%B0%D0%BD%D1%81%D1%84%D0%BE%D1%80%D0%BC%D0%B0%D1%82%D0%BE%D1%80 %D0%B4%D0%BB%D1%8F %D0%B7%D0%B2%D1%83%D0%BA%D0%BE%D0%B2%D0%BE%D0%B9 %D1%82%D0%B5%D1%85%D0%BD%D0%B8%D0%BA%D0%B8Трансформатор для звуковой техники

Классические трансформаторы

Трансформаторы с обрезанным ленточным сердечником

%D0%9A%D0%BB%D0%BE%D0%BD Naim NAP 200 %D0%B2%D0%BD%D1%83%D1%82%D1%80%D1%8F%D0%BD%D0%BA%D0%B0Клон Naim NAP 200 внутрянка

Источник

Характеристика и устройство звуковых трансформаторов, тестирование и схематические решения

Звуковой тип трансформатора — довольно нестандартное устройство, требующее тщательного подхода к разработке схематического решения. Такие виды оборудования отличаются от силовых по некоторым параметрам, для правильного проектирования и соблюдения ТБ важно понимать их устройство. Кроме того, принцип работы и характеристики значительно меняются в зависимости от того, к выходному или межкаскадному виду относится аудиотрансформатор.

Ламповые усилители: теоретические основы

Ламповые усилители представляют собой устройства, предназначенные для усиления звукового сигнала. Делается это за счет компонента — специальных ламп. При этом лампы могут быть радио или электровакуумные — от этого зависят технические особенности устройства. Своеобразный генератор может функционировать на трех типах каскадов:

Предупредительный и драйверный часто совмещаются между собой, тем самым увеличивая сферу применения устройства и улучшая его эффективность. Основное преимущество ламповых усилителей в том, что они очень простые по своим конструктивным особенностям. Собрать их даже новичку, который имеет приблизительные знания в области радиоэлектроники, не составит труда.

Трансформатор такого типа изготовляется в домашних условиях, если есть в наличии детали, на это не потребуется много времени.

1Lampovyj usilitel Vincent TAC 34

Если говорить о теоретических основах, то обязательно нужно определиться, какой из видов усилителя нужен для той или иной ситуации. Представлены однотактные и двухтактные модели (каждый из них можно сделать самостоятельно).

Однотактный подразумевает, что используется только единичный канал усиления звука. Однотактные отличаются поставкой более чистого и простого звучания, если появляется вторая гармоника, то звук получается более мягкий. Именно от того, что в результате вмешательства второй гармоники звук получается тянувшим, нежным и мягким и появилось известное в музыкальных компаниях выражение лампового звука

Двухтактный усилитель функционирует на классах усиления А1, А2, АВ1, АВ2, В1, В2. Для большинства случаев подойдут вариации А1 и АВ1. Такие модели новичкам собрать не под силу, поэтому для их покупки обращаются в магазины.

Трансформатор звукового типа работает от сопротивления источника на сопротивление нагрузки. Это неоспоримая аксиома, вне зависимости от того, в какому типу относится тс — меж каскадному или выходному.

Устройство передачи звука подключается к первичной обмотке оборудования. У него есть сопротивление, вторичка подключена к нему. Принцип работы далее определяется типом трансформатора.

Межкаскадные

Эти устройства практически не выпускаются современными производителями. Дело в том, что принцип их работы основывается на передаче импульса между двумя сопротивлениями или импедансами. Это не удобно и приводит к потере коэффициента полезного действия.

4 13

Выходные

Выходного типа тс функционируют не от импедансов обоих, а от конкретного сопротивления источника. В зависимости от вариации оборудования это может быть тетрод или пентод, которые подключены к активному сопротивлению.

3 19

Ключевые отличия от силового

Трансформатор звуковой частоты отличается от привычного силового в первую очередь тем, что в нем присутствует устройство для пропуска диапазона звуковых частот. Широкополосные довольно трудны в просчетах, особенно если речь идет о полных сопротивлениях и при работе на большой мощности. Всегда присутствует постоянной ток на одной из обмоток. Проблемы со схематической частью вызваны трудностями в расчете из-за числа октав, с которыми работает устройство, а не диапазона.

Импульсный трансформатор для питания усилителя звуковых частот занимает меньше места, если сравнивать его с аналогом силовым с идентичными техническими показателями. К усилителю обязательно идет генератор, а к силовому трансформатору — только первичная обмотка к электрической сети, вторичная обмотка к диодам и различные конденсаторы.

5 13

Особенности проектирования трансформаторов звуковой частоты для ламповой радиотехники

Востребованность тс звуковой частоты обусловлена тем, что тут нет переходных конденсаторов. Устройства отличаются стабильной работой несмотря на возможные перебои с питанием и подачей напряжения, полоса расширена в сторону низких частот. Последний фактор обуславливает комфорт для человеческого уха, которое при средней громкости более чувствительно к низким и средним частотам.

Главная особенность проектирования состоит в том, что необходимо уменьшить будет усиление на самых низких частотах. Этого не достичь другим способами кроме как снизить индуктивное сопротивление первички.

Зная схематическое решение новичку желательно собрать устройство на монтажной плите. Колпачками закрываются лампы. Проверка работы вторичной обмотки проходит после сборки аппаратуры. Если возникает резкий свист или жужжание, то меняются местами выводы. Дроссели наматываются в соответствии со схемой. В большей части оборудования подойдет расчет только с зазоров. При этом размер зазора делается в строгом соответствии с необходимым, в противном случае параметры сильно отличаться, что не является верным.

Возможные схематические решения

Основной технический параметр трансформатора аудио типа — это импеданс. Данные модели тс оптимально походят для балансировки нагрузок и усилителей, которые несмотря на разные входные и выходные показатели сопротивления передают точно мощность.

Стандартное значения для преобразователя звуковой частоты составляет от 4 до 16 Ом. Но каскад на выходе может формировать и сопротивление, значение которого достигает свыше сотни Ом. Отношение витков определяется числом витом на первичной и вторичной обмотке, при этом так как напряжение появляется идентичное, это число будет и равно отношению этих напряжений. По формуле, отношение сопротивлений будет равно квадрату первичного и вторичного напряжений.

Схематическое решение зависит от типа — понижающий или повышающий. Если тс относится к виду 1:1, то число витков одинаковое, импеданс идентичный для всех обмоток, характеристик сигнала не меняются. Если требуются различные типы импедансов, то понижающий или повышающий прибор оснащается разным числом витков.

transformator na SH26h40

Техника безопасности

Тестирование на безопасность, использование, а также самостоятельная сборка оборудования требуют соблюдения определенных мер предосторожности.

Если собираются проводить ремонт, то оборудование обязательно отключат от сети. Нельзя, чтоб было напряжение. Для работы, в том числе и вводами, а не самой внутренней частью, специалисты надевает защитные очки. Для тестирования применяются специальные приборы. Помните, что устанавливать показатели, превышающие максимальный номинальный порог устройства в зависимости от расчетных характеристик небезопасно.

Тестирование аудиотрансформаторов

Тестирование звукового трансформатора может понадобится по ряду причин. В первую очередь работу проводят перед началом его использования, чтоб понять, достаточные ли показатели обеспечиваются дросселем, обмотками и другими механизмами.

Если трансформатор работает качественно, то разница в музыке незаметна, возникает характерное ламповое мягкое звучание. Но если есть неисправности, то по звуку их легко заметить, так как возникает перекос с сторону средних частот. В то время как низкие не ярко выражены, сигналы поступают не так регулярно, как требуется.

66

Тестирование обязательно проводится с учетом техники безопасности. После проведения предварительных защитных мер собирается оборудование. К числу приборов, при помощи которых тестируются трансформаторы, относят:

При проведении тестирования смотрят на марку, если речь идет не о варианте самостоятельной сборки. Варианты от непроверенных производителей гудят и шумят даже при подаче нормированной нагрузки. Если бренд трансформатора проверенный, то оборудование никаких сигналов не подает и остается прохладным. Проверяют в обязательном порядке после обмотки паянные соединения, термисторы, диоды, провода, переключатели и транзисторы.

Источник

Трансформатор согласующий звуковой своими руками

Новое — это хорошо забытое старое.
Пословица

Двадцать лет назад я, как и многие радиолюбители, интересующиеся звуковой аппаратурой, зачитывался журналом «Радио» и его младшим братом — сборником «В помощь радиолюбителю». Со своими друзьями я бурно обсуждал необходимое количество нулей после запятой в коэффициенте нелинейных искажений «идеального» усилителя и его устремляющуюся в космос скорость нарастания. Тогда ведь не столько слушали звучание, сколько восхищались техническими характеристиками. К сожалению, этой болезнью многие страдают и поныне.

Однажды, примерно в 1980 году, на запрещенном тогда радиорынке у магазина «Юный техник» в Автово я увидел молодого человека, продающего наушники «Sennheiser». На груди у него на скрепке висел листок бумаги с надписью: R = 600 Ом, DF = 40 Гц — 18 кГц. Об этой фирме я уже кое-что знал, хотя для Ленинграда она была большой редкостью. Удивили меня характеристики. Как же так? У всех наушников того времени диапазон частот меньше чем 20 Гц — 20 кГц не писали. Даже у гонконгских. На мой удивленный вопрос парень ответил: «А ты их послушай». И дал совет: не верить глазам своим, а верить ушам.

Мы познакомились. Это был известный «ламповщик» Сергей Егоров. Он пригласил меня к себе домой, и я попал в комнату настоящего профессионала-фаната — в «звуковой» рай. На рабочем столе полукругом возвышался небоскреб из десятков классных измерительных приборов, вокруг громоздились коробки с лампами, конденсаторами, трансформаторами, лежали грудами корпуса для усилителей, «кинаповские» динамики и т. д. У стены была сложена фанера, деревянные бруски и стояло несколько пар полутораметровых рупорных акустических систем. Такого я никогда не видел.

Сергей показал мне несколько японских радиотехнических журналов, которые были заполнены ламповыми схемами. Недоумение мое возрастало: весь мир завален японской транзисторной техникой; для себя, значит, лампы, а для остальных стран — транзисторы? Почему?

Окончательно меня повергло в изумление натуральное и живое звучание лампового усилителя и то, что у него, как сказал Сергей, коэффициент нелинейных искажений аж 1%. В голове все смешалось.

С этого момента я вошел в мир ламповой аудиотехники и рупорной акустики. По японской схеме, но на наших лампах собрал свой первый ламповый усилитель, затем корректор (кстати, без катодных повторителей, без SRPP и с пассивной коррекцией). Как-то мы с Егоровым попали на прослушивание, проходившее в одной известной коммунальной квартире в Басковом переулке. Было несколько экспертов, один из которых, когда испытывали мой корректор, язвительно-весело заметил: «А у вас фонит!» Это был уже тогда знаменитый А. Лихницкий. Другой, которому при прослушивании вообще ничего не нравилось, слушая усилитель Егорова, указал на «зализанность и волосатость» звучания и как итог — на «ядовитость» звука. И добавил: «Похоже, это общая болезнь трансформаторов». Как выяснилось, одна неосторожно брошенная фраза может надолго увести с правильного пути.

Шли годы. Мой интерес к звуковой технике и к звуку возрастал. Решив соединить профессию и хобби, я поступил на работу в Дом радио. Но там вопрос качества звучания и его улучшения стоял далеко не на первом месте. К примеру, звукорежиссеру не нравится звучание; техники прикатывают похожий на робота мультиизмерительный комплекс на колесиках, тестируют тракт и говорят, что параметры в норме и претензии не принимаются. Но энтузиасты-радийщики всегда предпочитали использовать в звуковом тракте трансформаторы, особенно на входе и выходе микшерных пультов, микрофонных усилителей и на выходе микрофонов. Старые звукорежиссеры с нескрываемой ностальгией вспоминали прозрачное динамичное звучание профессиональных ламповых усилителей с высокочувствительными акустическими системами на больших бумажных диффузорах. Да и уши за рабочую смену от них не уставали,— добавляли они.

К началу 1995 года последователи Егорова собрались вместе. Казалось, теперь можно быстро решить все проблемы качества звучания. Мы плотно занялись исследованием влияния на звук отдельных радиокомпонентов (резисторов, конденсаторов, ламп, проводов и т. д.); начали определять закономерности изменения звучания при использовании различных схемотехнических решений, комбинаций элементов и способов монтажа; стали упрощать сигнальные схемы, уменьшать количество используемых элементов, укорачивать путь прохождения сигнала. После каждого изменения звуковой тракт тщательно прослушивался. Отказавшись от «кругового пути»— ООС, мы стали отказываться и от всевозможных «параллельных путей». Причем обнаружилось, что эти «круговые» и «параллельные» пути есть везде и не так просто их выявить. Зато, если удается это сделать, насколько улучшается звук! Например, устранение «параллельных путей» в блоке питания улучшает звучание на порядок больше, чем замена межблочного кабеля или кабеля к АС, пусть даже на очень дорогой. Хотя это вовсе не значит, что нужно забыть о влиянии конструкции и материала проводов на качество звука.

После того как в разработанных нами схемах с гальваническими межкаскадными связями остался один выходной (или разделительный) конденсатор, встал вопрос: а нельзя ли избавиться и от него? В свое время основатель фирмы «Audio Note» Хирояши Кондо сказал: «Если количество элементов в цепи уменьшить хотя бы на один, то будет устранен еще один источник механичного звучания» [1]. А уж насколько пагубно влияют конденсаторы на звук, я думаю, знают многие.

Мы стали искать новое решение, которое на поверку оказалось очень старым. Как сообщает журнал «Sound Practices» [2], еще в 1912 году был создан первый звуковой усилитель «Audion», вообще не имевший разделительных конденсаторов; все межкаскадные связи в нем были построены на трансформаторах (а вот первые резистивно-емкостные схемы, говорится в этом же журнале, появились лишь в 1916 году). Значит, применяя трансформаторы, можно полностью избавиться в звуковом тракте от разделительных конденсаторов, а с учетом современных разработок — и от резисторов. Останутся только лампы и трансформаторы! И все!

А какова ситуация в этой области сегодня? Два года назад фирма «Marantz» выпустила флагманский усилитель «Project T1» на прямонакальных лампах с трансформаторными связями. Уже много лет известный разработчик фирмы «Yoshiki Industrial Co., Ltd» Шишидо применяет в своих моделях трансформаторы по всему тракту, да и сам Кондо-сан в последнее время в своих разработках все больше использует межкаскадные трансформаторы. И наконец, из «Интернета» мы узнали, что в Японии есть знаменитый аудиофил Сакума, вот уже 20 лет разрабатывающий различные усилительные устройства на основе не менее знаменитых входных, межкаскадных и выходных трансформаторов фирмы «Tamura».

Чем же так привлекательна (была и снова стала) трансформаторная связь? Из теории известно [3], что трансформаторный каскад (рис. 1, а) отличается от резистивно-емкостного (рис. 1, б) следующими чертами:

arrowобладает значительно более высоким КПД;

arrowспособен создавать для лампы наивыгоднейший режим нагрузки (то есть режим, в котором она получает максимально возможное напряжение и мощность при минимальных искажениях);

arrowпозволяет получать необходимое выходное сопротивление и добиваться оптимального согласования между каскадами;

arrowдает возможность получать большое выходное напряжение сигнала;

arrowпозволяет наиболее просто получать симметричные выходные напряжения (для двухтактных каскадов и для работы на длинную линию).

Недостатками трансформаторных каскадов являются увеличенные массогабаритные параметры (что не так важно в ламповых конструкциях) и не очень хорошие амплитудно- и фазочастотные характеристики. Впрочем, последние можно улучшить путем повышения качества трансформатора, что, однако, непросто и недешево.

Проверим (для тех, кто любит все считать) первое, наименее очевидное преимущество трансформаторного каскада перед резистивно-емкостным. Возьмем, к примеру, лампу 6С45П-Е, которая имеет высокий коэффици- ент усиления μ≈50, низкое внутреннее сопротивление в рабочей точке Ri = 1,25 кОм и низкий уровень собственных шумов. Выберем рабочую точку: напряжение анода Ua = 150 В, ток покоя I0 = 35 мА, при этом мощность, рассеиваемая на аноде, составит Pa = UaIa = 5,25 Вт. С целью уменьшения нелинейных искажений возьмем нагрузочный коэффициент α = 3,76, тогда сопротивление анодной нагруз- ки по переменному току составит Ra = αRi = 4,7 кОм. Пусть переменное напряжение на выходе обоих каскадов составит Uн = 60 В, а нагрузкой служит резистор Rн = 47 кОм (входное сопротивление следующего каскада). Возьмем трансформатор с КПД ηтр = 0,9 (что реально) и сопротивлением первичной обмотки Rт = 200 Ом. При этом коэффициент трансформации Кт = √(Rн/Ra) = √10.

arrowПодсчитаем КПД анодной цепи для двух видов каскадов. Мощность на нагрузке:

Рис. 1 Выходной каскад усилителя:

слева — трансформаторный; справа — резистивно-емкостной

trans2 trans3

Итак, КПД трансформаторного каскада почти в 9 раз больше КПД резистивно-емкостного каскада.

arrowПойдем дальше. Посмотрим, какое напряжение источника питания требуется для обеспечения необходимого режима по постоянному току:

Таким образом, требуемое напряжение (а следовательно, и мощность) источника анодного питания для трансформаторного каскада будет в 2 раза меньше, чем для резистивно-емкостного.

arrowПроверим, какая часть мощности сигнала достигает нагрузки. Мощность сигнала, выделяемая на аноде лампы:

(здесь Rэ = RаRн/(Rа+Rн) — эквивалентное сопротивление нагрузки лампы).

Мощность сигнала, выделяемая на нагрузке

Отсюда следует важный вывод: в трансформаторном каскаде 9/10 мощности сигнала достигает нагрузки, а в резистивно-емкостном — лишь 1/11 часть (остальные 10/11 выделяются на анодном резисторе впустую!).

Ну, хорошо, цифры цифрами, а как же самое главное — звучание? Мы уже знали, насколько по-разному могут звучать трансформаторы разных фирм — входные (МС) и выходные. Свои выходные трансформаторы мы рассчитывали и многократно дорабатывали, учитывая только параметры. Как заразен вирус технократизма! Правда, экспериментировать со звучанием выходных трансформаторов чрезвычайно трудоемкая работа, и не очень это корректно, ведь перед трансформатором у нас было несколько нетрансформаторных каскадов. Надо было идти от простого к сложному. Решили отработать звучание только одного линейного трансформаторного каскада.

Мы вплотную занялись конструкцией выходного трансформатора для предусилителя — с целью получения наиболее низкого выходного сопротивления (которое позволяет снизить влияние паразитных параметров соединительного кабеля [4]), много раз перематывали обмотки, и наконец нам удалось получить отличные технические характеристики: АЧХ 8–140000 Гц (-0,5 дБ), Кни = 0,09% (50–12500 Гц, Uвых= 1 В). Но звучание нас не совсем удовлетворило. Что-то мешало.

На основе наработанного нетехнократического опыта был сделан тщательный анализ конструкции трансформатора и найден камень преткновения. Убрав этот «камень», мы смогли добиться желаемого звучания. Технические характеристики же при этом явно ухудшились: АЧХ 22–24500 Гц (-0,5 дБ), Кни = 0,12% (50–12500 Гц, Uвых= 1 В). Лишний раз мы убедились, что связь технических параметров, имеющихся в нашем распоряжении, с качеством звучания далеко не однозначна.

Полученный трансформатор для выходного каскада линейного устройства оказался достаточно универсален: его с успехом можно использовать в линейном предусилителе, усилителе для телефонов, выходном каскаде проигрывателя компакт-дисков, корректора RIAA или цифро-аналогового преобразователя. На данный момент разработаны и запущены в производство две версии трансформатора: «TL 45» для лампы 6С45П-Е и «TL 4C» для ламп 2А3, 6В4G, 6С4С, включенных по схеме, которая показана на рис. 2. Эта схема является дальнейшим развитием «трансформаторной идеи» в выходных линейных каскадах.

Четвертое свойство трансформаторных каскадов (см. выше) делает весьма привлекательным их использование в предмощных (драйверных) схемах, работающих на мощные выходные триоды типа 300В, VV30B, 211, 845, ГМ70, SV572 и др. В этом случае трансформатор позволяет получить огромную амплитуду выходного напряжения (100 В и выше) при низких нелинейных искажениях (0,2–0,4%), а также малое выходное сопротивление, что необходимо для работы оконечной лампы с токами сетки [5].

Работа в этом направлении привела к созданию драйверного межкаскадного трансформатора TI300B для ламп 300B, 2A3, 6B4G и др. Он используется в драйверном каскаде усилителя «SPb Sound T70SE» на лампе 6B4G для «раскачки» ГМ70 (рис. 3). Данный каскад обеспечивает переменное напряжение 100 В на нагрузке 12 кОм при значениях Кни 0,3% (60 Гц), 0,22% (1 кГц), 0,45% (12,5 кГц); АЧХ: 17,5–22000 Гц (-0,5 дБ), 7–65000 Гц (-3 дБ); коэффициент усиления 4,5.

trans4

Подобное схемотехническое решение применяется также в однотактных усилителях «CAD 805» фирмы «Cary», «Ankoru» (фирмы «Audio Note») и некоторых других.

trans1

Использовать пятое преимущество трансформаторного каскада оказалось труднее всего, и это потребовало очень много времени. Зато как упростилась схема двухтактного усилите ля (рис. 4)! Количество ламп сократилось до трех за счет полного отсутствия резисторов и конденсаторов в сигнальной цепи. Полученный двухтактный межкаскадный трансформатор TI300PP имеет следующие параметры: асимметрия ±0,02 дБ (18–16000 Гц), при Uвых = 40 В и значениях Кни 0,65% (60 Гц), 0,55% (1 кГц), 0,46% (10 кГц); АЧХ: 26–16000 Гц (±0,5 дБ), 18–20000 Гц (±1 дБ).

trans5

На проходившей недавно в Москве выставке «Hi-Fi Show’98» главному разработчику «Audio Note UK» Питеру Квортрупу был задан вопрос о целесообразности применения трансформаторной связи в ламповых усилителях. Ответ был однозначным: трансформаторные каскады на самом деле существенно улучшают звучание, но выгодно это для производства усилителей только высоких ценовых категорий, так как хороший трансформатор стоит очень дорого.

Литература

    arrow«Sound Practices», vol. 1: № 2 (Fall 1992), р. 5. Перевод мой.
    arrow«Sound Practices», issue 10, 1996, р. 16.
    arrowГ. В. Войшвилло. Усилители низкой частоты. М., Связьиздат, 1939.
    arrowЮ. Макаров. От «Неофита» до «Адепта».— «Hi-Fi & Music», 1997.
    arrowГ. С. Цыкин. Трансформаторы низкой частоты. М., Связьиздат, 1950.

Вас может заинтересовать:

Комментарии к статьям на сайте временно отключены по причине огромного количества спама.

При перепечатке материалов ссылка на первоисточник обязательна.

Источник

Поделиться с друзьями
admin
Здоровая спина
Adblock
detector