Тестер стрелочный своими руками

УНИВЕРСАЛЬНЫЙ СТРЕЛОЧНЫЙ ПРИБОР ДЛЯ ПРОВЕРКИ ДЕТАЛЕЙ

Аналоговые (со стрелочной измерительной головкой) тестеры типа 4353, 43101 и аналогичные были в своё время широко распространены и, возможно, есть в «закромах» многих радиолюбителей. Современные цифровые приборы, конечно, имеют гораздо меньшие габариты и большую функциональность и универсальность, тем не менее, из такого «старого» тестера можно при желании сделать вполне удобный измерительный прибор. Тем более, что стрелочный индикатор во многих случаях оказывается гораздо удобнее и нагляднее для отображения информации, если, конечно, при измерениях не требуется запредельная точность.

strelochnyj tester detalej 9

Так например, с использованием стрелочной головки от подобного тестера мной был сделан небольшой настольный измерительный прибор, который позволяет с достаточной для радиолюбителя точностью измерить ёмкость конденсаторов ( 5 пФ — 10 мкФ), индуктивности катушек ( от единиц мкГн до 1 Гн ), ёмкости электролитов ( 1 мкФ — 10 000 мкФ) и их ESR, иметь «под рукой» фиксированные образцовые частоты ( 10, 100. 1000 Гц, 10, 100, 1000 кГц ). И, кроме того, имеет встроенный модуль для оперативной проверки работоспособности различных транзисторов малой и большой мощности и определения цоколёвки неизвестных транзисторов. Причём проверить параметры большинства элементов можно, не выпаивая их из схемы.

Прибор собирался в корпусе меньших размеров, чем «родной» от тестера и делался по «модульному» принципу — по желанию можно добавлять или исключать отдельные измерительные узлы и при этом не производить никаких существенных изменений в остальной схеме. Можно сохранить также и изначальные фунции измерения напряжений и токов, если это потребуется. Причём совсем не обязательно ориентироваться на применённую здесь стрелочную головку от взятого мной тестера — подойдёт любая другая с током полного отклонения 50 … 200 мкА, это не принципиально. Ниже будут даны схемы и описания отдельных функциональных узлов-«модулей», структурная схема их соединений в приборе в целом.

strelochnyj tester detalej 10

Каждый «модуль» предназначен для измерения-проверки различных радиодеталей широкого применения и может использоваться не только в составе такого прибора, но и, конечно, отдельно, в виде небольшой независимой конструкции. Сами схемы измерительных узлов, входящие в состав, не новы и не раз были опубликованы в своё время в различных источниках и проверены на практике многими радиолюбителями, показав стабильную и надёжную работу, Никаких редких и дорогих элементов констукция не содержит, схемы чрезвычайно «лаконичные» и просты в понимании, не требуют особых приборов для настроек, при этом обеспечивают достаточную точность измерений при внимательной и грамотной сборке и применении заведомо исправных деталей.

Генератор образцовых частот

Даже простейший генератор сигналов в радиолюбительской практике полезен сам по себе и часто входит в других приборов, например, измеряющих ёмкости и индуктивности. Здесь удобно применить в качестве генератора широко известная схема на цифровых элементах, простую и легко повторяемую:

strelochnyj tester detalej 1

Задающий генератор на МС типа К561ЛА7 (или К561ЛЕ5, К176ЛА7, ЛЕ5 и подобные) выдаёт на своём выходе частоту, которая стабилизирована кварцевым резонатором в цепи обратной связи — в данном случае 1 МГц. Далее сигнал проходит через несколько каскадов-делителей частоты на 10 например, на МС К176ИЕ4, СD4026 или любых других счётчиков-делителей на 10) и с выхода каждого каскада снимается сигнал с частотой, в десять раз меньше предудыщей.

С помощью любого подходящег переключателя коммутируем один из выходов счётчиков-делителей и получаем, таким образом, набор фиксированных частот. Конденсатором С1 можно подстроить частоту в небольших пределах, если это необходимо, никаких других настроек данная схема не требует и питается от источника напряжением 9-12 вольт (при указанных выше типах микросхем).

Модуль измерения L, C

Первая схема представляет собой узел измерения емкостей конденсаторов от 10 пФ до 10 мкФ и индуктивностей от 10 мкГ до 10 Гн (рис.2).

strelochnyj tester detalej 2

Примечание: при настройке этого модуля была совсем исключена из схемы ёмкость С1 (1000 пФ), так как при её наличии не удавалось настроить диапазон измерений 1-100 пФ. При настройке также возможен подбор сопротивлений R2, R3 в зависимости от напряжения питания и конкретного типа применённого транзистора (может быть любой маломощный p-n-p структуры). В качестве выпрямительных использовались «старинные» германиевые диоды типа Д9, обеспечивающие более линейную характероистику отображения показаний стрелочной головки. Возможно применение кремниевых, но в данном случае я этот вариант не пробовал, так как диодов Д9 давно лежала без дела небольшая кучка.

Модуль измерения электролитических конденсаторов (+ C и ESR)

Для проверки электролитических конденсаторов был собран узел по схеме (рис.3):

strelochnyj tester detalej 3

Как и в предыдущей схеме, на вход (резистор R1) подается сигнал с движка переключателя частот генератора-делителя (схема рис.1), при этом схему можно включать параллельно с предыдущим модулем. Резистор R1 подбирается в зависимости от типа транзистора Т1 и чувствительности используемой измерительной головки. В отличие от других модулей, здесь требуется пониженное стабильное питание 1,2 — 1,8 В (схема такого стабилизатора будет приведена ниже, на рис.6). При измерениях полярность подключения конденсаторов к клеммам «+Сх» и «Общ» не имеет значения, а измерения можно проводить без выпайки конденсаторов из схемы. Перед началом измерений прибор калибруется, то есть стрелка устанавливается на нулевую отметку шкалы резистором R4.

Узел измерения ESR содержит отдельный генератор на 100 кГц, собранный на МС типа 561ЛА7 (ЛЕ5), по такой же схеме, как и задающий генератор на рис.1. Можно, конечно же, использовать и уже имеющуюся частоту 100 кГц, которая присутствует на нашем основном генераторе с делителями частоты. Но при пользовании прибором оказалось гораздо удобнее иметь независимый генератор для этого модуля, так как это упрощает коммутацию.

Здесь частота может быть в пределах 80-120 кГц, поэтому применение кварца не требуется. От величины ESR подключенного к клеммам конденсатора зависит ток, протекающий через обмотку I трансформатора ( он намотан на ферритовом кольце диаметром 15 — 20 мм. Марка феррита роли не играет, но, возможно, число витков первичной обмотки нужно будет подкорректировать. Поэтому лучше будет сначала намотать обмотку II, а первичную — сверху неё).

Переменное напряжение 100 кГц, наведённое во вторичной обмотке, выпрямляется диодом VD5 и подаётся на измерительную головку (см. модуль индикации на рис.4). Диоды VD3, VD4 нужны для защиты стрелочной головки от перегрузки и могут быть любые, а VD1, VD2 также желательно применить германиевые.

В этой схеме при измерениях также не важна полярность подключения конденсаторов и измерять параметры конденсаторов можно прямо в схеме, без выпайки. Пределы измерения задаются при настройке и их можно менять в широких пределах подстроечником R5, от десятых долей Ома, до нескольких Ом.

Примечание: при измерении ESR конденсаторов ЛЮБЫМ прибором важно учитывать влияние сопротивления измерительных щупов и проводов от клемм «ESR» и »Общ». Они должны быть как можно короче и большого сечения. Если этот модуль будет расположен вблизи с другим источником импульсных сигналов (например рядом с генератором рис.1), возможен срыв генерации узла на МС. Поэтому этот узел (измерения «ESR»), лучше собрать на отдельной небольшой плате и поместить в экран (из жести, например), соединённый с общим проводом. Питание микросхемы измерителя ESR может быть как и у предыдущих схем.

strelochnyj tester detalej 8

Величины типовых (максимально допустимых) значений ESR различных конденсаторов даны ниже в таблице (позаимствованно из открытых источников).

Функциональная схема соединений модулей прибора

Соединение между собой всех перечисленных выше «модулей» в одном общем приборе не представляет особой сложности и это видно из рис.4:

strelochnyj tester detalej 4

Модуль индикации, помимо самой стрелочной головки, включает в себя шунтирующий конденсатор (10 … 47 мкФ) для устранения «дрожания» стрелки при измерениях в диапазонах с низкой частотой задающего генератора. Добавочное сопротивление подбирается в зависимости от чувствительности измерительной головки.

В случае объединения всех перечисленных выше модулей в одном приборе следует иметь ввиду, что клемма «Общ.» на схеме рис.2 (модуль измерения «C» и «L») не является общим проводом схемы (!) и требует отдельного гнезда.

Дополнения

Составной транзистор Т1 (КТ829, схема рис.3) можно заменить двумя транзисторами меньшей мощности по типовой схеме, а для питания 1,4 В можно собрать простой стабилизатор на одном транзисторе. Эти схемы показаны на рис. 5 и 6 соответственно.

strelochnyj tester detalej 5strelochnyj tester detalej 6

Кремниевые диоды VD1-VD3 здесь применены в качестве стабилитрона, примерно на 1,5 В. В отличие от стабилитрона, включать диоды следует в прямом направлении.

При желании можно дополнить прибор модулем для быстрой проверки работоспособности и цоколёвки транзисторов. С его помощью можно проверять любые биполярные транзисторы, а также полевые транзисторы малой и средней мощности. Причём биполярные транзисторы можно проверять без выпайки их из схемы. Схема представлена на рис.7.

strelochnyj tester detalej 7

В зависимости от применённых светодиодов нужно подобрать сопротивление R5 по оптимальной яркости их свечения (или же поставить дополнительный гасящий резистор в цепь питания 9 В, а вообще эта схема работает с питающим напряжением, начиная от 2 В). Когда к клеммам «Э», «Б», «К» ничего не подключено, оба светодиода мигают (частота миганий может быть изменена номиналами конденсаторов С1 и С2). При подключении к клеммам исправного транзистора, один из светодиодов погаснет (в зависимости от типа его проводимости p-n-p / n-p-n). Если транзистор неисправен, то оба светодиода будут мигать (внутренний обрыв) или оба погаснут (замыкание).

При проверке полевых транзисторов клеммы «Э», «Б», «К» соответствуют выводам «И», «З», «С». Полевые транзисторы, или очень мощные биполярные всё-таки лучше проверять, выпаяв их из плат.

Прибор с применением всех перечисленных модулей был собран в корпусе размерами 140х110х40 мм и позволяет проверить практически все основные типы радиодеталей чаще всего используемых на практике, с достаточной для радиолюбителей точностью. Используется несколько лет и нареканий не вызывает.

Примечания к схеме

(в скобках указаны значения ёмкости для электролитических конденсаторов)

Источник

Универсальный прибор для проверки радиоэлементов из стрелочного тестера

Андрей Барышев, г. Выборг

Стрелочные тестеры типа 4353, 43101 и другие в свое время были широко распространены. Приборы имели встроенную защиту и позволяли производить измерения различных электрических параметров, однако отличались громоздкостью, а при измерении емкости конденсаторов были привязаны к сетевому напряжению. При этом тестеры имели неплохие стрелочные измерительные головки, которые можно использовать в конструкции с гораздо меньшими габаритами и бóльшими возможностями. Так, с использованием этой головки был сделан небольшой настольный аналоговый измерительный прибор с минимальным количеством элементов управления. Он позволяет с достаточной для радиолюбителя точностью измерять емкость неполярных конденсаторов (5 пФ – 10 мкФ), индуктивность катушек (от единиц мкГн до 1 Гн), емкость электролитических конденсаторов (1 мкФ – 10 000 мкФ) и их ESR, иметь «под рукой» фиксированные образцовые частоты (10, 100. 1000 Гц, 10, 100, 1000 кГц) и, кроме того, в него может быть добавлен встроенный модуль для оперативной проверки работоспособности различных транзисторов малой и большой мощности и определения цоколевки неизвестных транзисторов. Причем проверить параметры большинства элементов можно, не выпаивая их из схемы.

Модульная конструкция прибора позволяет использовать только необходимые функциональные узлы. Ненужные модули можно легко исключить, а нужные так же легко добавить при желании. Возможность сохранения «родных» функций прибора – измерения напряжений и токов – также имеется. Ну и, конечно, стрелочная измерительная головка может быть любой другой (с током полного отклонения 50 … 200 мкА), это не принципиально. Далее будут даны схемы и описания отдельных функциональных «модулей» прибора, а затем – структурная схема всего прибора полностью и схема коммутации отдельных его узлов. Все схемы были не раз проверены на практике и показали стабильную и надежную работу, без сложных настроек и использования каких-либо специфических деталей. При необходимости сделать компактный прибор для проверки конкретных компонентов и их параметров каждую такую схему-модуль можно использовать отдельно.

Генератор образцовых частот

Использована широко распространенная схема генератора на цифровых элементах, которая при всей своей простоте обеспечивает набор необходимых рабочих частот с хорошей точностью и стабильностью, не требуя при этом никаких настроек.

Fig 1
Рисунок 1. Генератор 1 МГц с делителями частоты.

Генератор на микросхеме К561ЛА7 (или ЛЕ5) синхронизирован кварцевым резонатором в цепи обратной связи, определяющим частоту сигнала на его выходе (выводы 10, 11), равную в данном случае 1 МГц (Рисунок 1). Сигнал генератора последовательно проходит через несколько каскадов делителей частоты на 10, собранных на микросхемах К176ИЕ4, СD4026 или любых других. С выхода каждого каскада снимается сигнал с частотой в десять раз меньшей входной частоты. C помощью любого переключателя на шесть положений сигнал с генератора или с любого делителя можно вывести на выход. Правильно собранная из исправных деталей схема работает сразу и не нуждается в настройке.. Конденсатором С1 при желании можно в небольших пределах подстраивать частоту. Схема питается напряжением 9 В.

Модуль измерения L, C

Схема каскада для измерения емкости неполярных конденсаторов и индуктивностей показана на Рисунке 2. Входной сигнал подается непосредственно с выхода переключателя диапазонов измерений (SA1 на Рисунке 1). Сформированный прямоугольный импульсный сигнал, поступающий на выход «F» через ключевой транзистор VT1, можно использовать для проверки или настройки других устройств. Уровень выходного сигнала можно регулировать резистором R4. Этот сигнал подается также на измеряемый элемент – конденсатор или индуктивность, подключенные, соответственно, к клеммам «C» или «L», при этом переключатель SA2 устанавливается в соответствующее положение. К выходу «Uизм.» подключается непосредственно измерительная головка (возможно, через добавочное сопротивление; см. ниже «Модуль индикации»). Резистор R5 служит для установки пределов измерений индуктивностей, а R6 – емкостей. Для калибровки каскада к клеммам «Сх» и «Общий» на диапазоне 1 кГц подключаем образцовый конденсатор 0.1 мкФ (см. схему на Рисунке 1) и подстроечным резистором R6 устанавливаем стрелку прибора на конечное деление шкалы.

Fig 2
Рисунок 2. Модуль измерения емкости и индуктивности.

Затем подключаем конденсаторы, например, емкостью 0.01, 0.022, 0.033, 0.047, 0.056, 0.068 мкФ и делаем соответствующие метки на шкале. После чего таким же образом калибруем шкалу индуктивностей, для чего на этом же диапазоне 1 кГц подключаем к клеммам «Lx» и «Общий» образцовую катушку индуктивностью 10 мГн и подстроечным резистором R5 устанавливаем стрелку на конечное деление шкалы. Впрочем, калибровать прибор можно и на любом другом диапазоне (например, при частоте 100 кГц или 100 Гц), подключая в качестве образцовых соответствующие емкости и индуктивности, согласно выбранному диапазону.

Напряжение питания каскада (Uпит) – 9 В.

Модуль измерения электролитических конденсаторов (+C и ESR)

Модуль представляет собой микрофарадометр, в котором определение емкости производится косвенным образом путем измерения величины напряжения пульсаций на резисторе R3, которое будет меняться обратно пропорционально емкости периодически перезаряжаемого конденсатора. Можно измерять емкости оксидных (электролитических) конденсаторов в диапазонах 10–100, 100–1000 и 1000–10000 мкФ.

Измерительный узел для электролитических конденсаторов собран на транзисторе Т1 (Рисунок 3). На вход (R1) подается сигнал непосредственно с выхода генератора-делителя (схема на Рисунке 1), включать который можно параллельно предыдущему модулю. Резистор R1 подбираем в зависимости от типа использованного транзистора Т1 и чувствительности используемой измерительной головки. Резистор R2 ограничивает ток коллектора транзистора в случае короткого замыкания в проверяемом конденсаторе. В отличие от других модулей, здесь требуется пониженное стабильное питание 1.2 – 1.8 В; схема стабилизатора на такое напряжение будет приведена ниже на Рисунке 6. Следует отметить, что при измерениях полярность подключения конденсатора к клеммам «+Сх» и «Общий» не имеет значения, а измерения можно выполнять, не выпаивая конденсаторы из схемы. Перед началом измерений резистором R4 стрелка устанавливается на нулевую отметку (конец шкалы).

Fig 3
Рисунок 3. Модуль измерения ESR и емкости электролитических конденсаторов.

Перед началом измерений (при отсутствии измеряемого конденсатора «+Сх») резистором R4 стрелка устанавливается на нулевую отметку (конечное деление шкалы). Калибровка шкалы «+Сх» может производиться на любом диапазоне. Например, переводим переключатель SA1 в положение, соответствующее частоте 1 кГц. С помощью R4 устанавливаем стрелку прибора на «0» (конец шкалы) и, подключая к клеммам «+Сх» и «Общий» образцовые конденсаторы емкостью 10, 22, 33, 47, 68 и 100 мкФ, делаем соответствующие отметки на шкале. После этого на других диапазонах (10 Гц и 100 Гц) эти же отметки будут соответствовать емкостям с номиналами в 10 и 100 раз бóльшими, то есть, от 100 до 1000 мкФ (100, 220, 330, 470, 680 мкФ) и от 1000 до 10000 мкФ, соответственно. В качестве образцовых здесь можно использовать танталовые оксидно-полупроводниковые конденсаторы, имеющие наиболее стабильные во времени параметры, например, типов К53-1 или К53-6А.

Узел измерения ESR содержит отдельный генератор 100 кГц, собранный на микросхеме 561ЛА7 (ЛЕ5) по такой же схеме, как и основной генератор на Рисунке 1. Здесь особой стабильности не требуется, и частота может быть любой от 80 до 120 кГц. От величины последовательного эквивалентного сопротивления подключенного к клеммам конденсатора зависит ток, протекающий через обмотку I трансформатора (намотан на ферритовом кольце диаметром 15 – 20 мм). Марка феррита роли не играет, но, возможно, число витков первичной обмотки нужно будет подкорректировать. Поэтому лучше сначала намотать обмотку II, а первичную – поверх нее. Выпрямленное постоянное напряжение после диода VD5 подается на измерительную головку (модуль индикации на Рисунке 4). Диоды VD3, VD4 ограничивают возможные броски напряжений для защиты стрелочной головки от перегрузки. Здесь полярность подключения конденсатора также не важна, и измерения можно проводить непосредственно в схеме.

Пределы измерения можно менять в широких пределах подстроечным резистором R5 – от десятых долей Ома до нескольких Ом. Но при этом следует учитывать влияние сопротивления проводов от клемм «ESR» и «Общий». Они должны быть как можно короче и большого сечения. Если этот модуль будет расположен вблизи с другим источником импульсных сигналов (например, рядом с генератором Рисунок 1), возможен срыв генерации узла на микросхеме. Поэтому узел измерения «ESR» лучше собрать на отдельной небольшой плате и поместить в экран (например, из жести), соединенный с общим проводом.

Fig 4
Рисунок 4. Структурная схема измерителя.

Для калибровки шкалы «ESR» подключаем к клеммам «ESR» и «Общий» резисторы сопротивлением 0.1, 0.2, 0.5, 1, 2. 3 Ом и делаем соответствующие отметки на шкале. Чувствительность прибора можно регулировать изменением сопротивления подстроечного резистора R5.

Питание измеритель ESR, так же, как и остальные схемы модуля, напряжением 9 В.

Схема соединений модулей прибора

Как видно из Рисунка 4, соединение всех «модулей» не представляет сложности. Модуль индикации включает в себя измерительную головку, зашунтированную конденсатором (100 … 470 мкФ) для устранения «дрожания» стрелки при измерениях в диапазонах с низкой частотой задающего генератора. В зависимости от чувствительности измерительной головки может понадобиться добавочное сопротивление.

Следует иметь в виду, что клемма «Общий» на Рисунке 2 (модуль измерения «C» и «L») не является общим проводом схемы (!) и требует отдельного гнезда.

Дополнения

Составной транзистор Т1 (схема Рисунке 3) при необходимости можно заменить узлом из двух транзисторов меньшей мощности, а в источнике питания 1.4 В можно использовать простой стабилизатор на одном транзисторе. Как это сделать, показано на Рисунках 5 и 6. Функцию стабилитрона здесь выполняют кремниевые диоды VD1-VD3 с суммарным прямым падением напряжения порядка 1.5 В. Включать диоды, в отличие от стабилитрона, нужно в прямом направлении.

Fig 5
Рисунок 5. Замена КТ829Г.

При желании можно дополнить прибор модулем для быстрой проверки транзисторов. С его помощью можно проверять любые биполярные транзисторы, а также полевые транзисторы малой и средней мощности. Причем биполярные транзисторы и, в ряде случаев, полевые, можно проверять без выпаивания их из схемы. Представленная на Рисунке 7 схема представляет собой комбинацию мультивибратора и триггера, где вместо резисторов нагрузки в коллекторные цепи транзисторов мультивибратора включены транзисторы с идентичными параметрами, но противоположной структуры (VT2, VT3). Резисторы R6, R7 задают необходимое напряжение смещения рабочей точки проверяемого транзистора, а R5 ограничивает ток через светодиоды и определяет яркость их свечения.

Fig 6
Рисунок 6. Стабилизатор низковольтный.

В зависимости от типа используемых светодиодов, возможно, придется подобрать сопротивление R5, ориентируясь на оптимальную яркость их свечения, или же поставить дополнительный гасящий резистор в цепь питания 9 В. Следует заметить, что эта схема работает с питающим напряжением, начиная от 2 В. Когда к клеммам «Э», «Б», «К» ничего не подключено, оба светодиода мигают. Частоту мигания можно подстраивать, меняя емкости конденсаторов С1 и С2. При подключении к клеммам исправного транзистора один из светодиодов погаснет, в зависимости от типа его проводимости – p-n-p или n-p-n. Если транзистор неисправен, оба светодиода будут мигать (внутренний обрыв) или оба погаснут (замыкание). Помимо клемм «Э», «Б», «К» на самом приборе (клеммная колодка, «фрагмент» панельки под микросхемы и прочее), можно параллельно им вывести из корпуса на проводах соответствующие щупы для проверки транзисторов на платах. При испытаниях полевых транзисторов клеммы «Э», «Б», «К» соответствуют выводам «И», «З», «С».

Fig 7
Рисунок 7. Схема для проверки транзисторов.

Следует учесть, что полевые транзисторы или очень мощные биполярные все-таки лучше проверять, выпаяв из платы.

При измерениях номиналов любых элементов непосредственно на плате следует обязательно отключить питание схемы, в которой производятся измерения!

Прибор занимает мало места, умещаясь в корпусе 140×110×40 мм (см. фото справа в начале статьи) и позволяет с достаточной для радиолюбителей точностью проверять практически все основные типы радиокомпонентов, чаще всего используемых на практике. Прибор без нареканий эксплуатируется в течение нескольких лет.

Источник

Поделиться с друзьями
admin
Здоровая спина
Adblock
detector