Тестер полупроводников своими руками

ТЕСТЕР ПОЛУПРОВОДНИКОВЫХ РАДИОЭЛЕМЕНТОВ НА МИКРОКОНТРОЛЛЕРЕ

Хочу поделится очень полезной для каждого радиолюбителя схемой, найденной на просторах интернета и успешно повторенную. Это действительно очень нужный прибор, имеющий много функций и собранный на основе недорогого микроконтроллера ATmega8. Деталей минимум, поэтому при наличии готового программатора собирается за вечер.

tester mk 4

Данный тестер с высокой точностью определяет номера и типы выводов транзистора, тиристора, диода и т.д. Будет очень полезен как начинающему радиолюбителю, так и профессионалам.

5379919

Особенно незаменим он в тех случаях, когда имеются запасы транзисторов с полустёртой маркировкой, или если не получается найти даташит на какой-нибудь редкий китайский транзистор. Схема на рисунке, кликните для увеличения или скачайте архив:

s19949976

Типы тестируемых радиоэлементов

Описание дополнительных параметров измерения:

tester mk

В списке приводится вариант отображения информации для английской прошивки. На момент написания статьи появилась русская прошивка, с которой всё стало гораздо понятнее. Скачать файлы для программирования контроллера ATmega8 можно тут.

tester mk 3

tester mk 13

tester mk 14

Кстати, у многих радиолюбителей часто возникают проблемы с проверкой полевых транзисторов, в том числе с изолированным затвором. Имея данное устройство, вы сможете за пару секунд узнать и его цоколёвку, и работоспособность, и ёмкость перехода, и даже наличие встроенного защитного диода.

tester mk 1

tester mk 2

Что касается обычных резисторов, то и тут налицо превосходство нашего тестера над обычными омметрами, входящими в состав цифровых мультиметров DT. Здесь реализовано автоматическое переключение необходимого диапазона измерения.

tester mk 11

tester mk 12

Готовый тестер можно разместить в любом небольшом пластмассовом корпусе. Устройство собрано и успешно испытано.

Форум по обсуждению материала ТЕСТЕР ПОЛУПРОВОДНИКОВЫХ РАДИОЭЛЕМЕНТОВ НА МИКРОКОНТРОЛЛЕРЕ

Источник

Тестер полупроводников своими руками

AVR Semiconductor, R, L, C, ESR, FRQ и т.д. 🙂 TESTER на микроконтроллерах ATmega

510 pf

nabor

Схема для прошивки №1:

skhema testera

skhema pribora 2

Особенности прибора:

0. При очень завидном функционале тестер очень прост в сборке и не требует дефицитных деталей.

1. Автоматическое обнаружение NPN и PNP транзисторов, N и P канальных МОП транзисторов, диодов, двойных диодов, тиристоров, симисторов, резисторов и конденсаторов.

2. Автоматическое определение и отображение выводов проверяемого компонента.

3. Обнаружение и отображение защитного диода у транзисторов.

4. Определение коэффициента усиления и прямого напряжения база-эмиттер биполярных транзисторов.

5. Измерение порогового напряжения затвора и ёмкости затвора МОП транзисторов.

6. Измерение прямого напряжения у простых диодов (светодиодов), не у двойных диодов.

7. Измерение сопротивления резисторов – диапазон от 1 Ом до 50 МОм.

8. Измерение ёмкости конденсаторов – диапазон от 25 пФ до 100 мФ.

9. Отображение значений на текстовом ЖК дисплее (2х16 символов).

10. Продолжительность тестирования детали менее 2 секунд (исключение составляют конденсаторы большой ёмкости).

11. Одна кнопка управления и автоматическое отключение питания.

12. Энергопотребление в выключенном состоянии

13. Проблемы при определении мощных тиристоров и симисторов, вследствие того, что ток при измерении 7 мА, что меньше тока удержания тиристора.

14. Проблемы при определении обычных полевых транзисторов, так как для большинства полевых транзисторов сток и исток при измерении мало отличаются или почти не различаются, поэтому они могут быть не распознаны, при тестировании полевых транзисторов возможно неправильное обозначение стока и истока, но, в принципе, тип транзистора показывается правильно в любом случае.

15. Питание устройства может осуществляться от батарейки типа «Крона» напряжением 9В или от сетевого адаптера 9-12В постоянного тока. При работе от батарейки подсветка дисплея не включается. При работе от сетевого адаптера подсветка включена всё время. Сетевой адаптер в комплект не входит, в комплекте есть только штекер для него.

ВИДЕО №1 РАБОТЫ ТЕСТЕРА ПОЛУПРОВОДНИКОВЫХ КОМПОНЕНТОВ

ВИДЕО №2 РАБОТЫ ТЕСТЕРА (увеличена точность и расширены диапазоны измерения R/C)

ВИДЕО №3 РАБОТЫ ТЕСТЕРА (в идео от покупателя Андрея из До нецка, заходите к нему на канал и найдёте там много интересной и полезной информации)

Индикация тестируемых элементов на дисплее прибора:

Описание дополнительных параметров измерения:

— Прямое напряжение – Uf mV

IMG 5056

Совсем забыл! Если нужна прошивка на другом языке, то Вы можете её найти здесь >>> в соответствующем архиве. Там есть и альтернативные прошивки!

Стоимость печатной платы с маской и маркировкой: 65 грн.

Стоимость полного набора деталей для сборки тестера (включая плату, ЖКИ (синий фон и белые символы), «прошитый» МК ATmega8 с прошивкой №2): 330 грн.

Стоимость собранной платы тестера на ATmega8: 365 грн.

Временно закончились 🙂

Инструкцию к набору с кратким описанием и перечнем деталей, входящих в комплект набора, можно увидеть здесь >>>

Для заказа просьба обращаться сюда >>> или сюда >>>

Для любителей «экстрима» 🙂 выкладываю прошивку №3. Любой желающий может лёгким движением руки заменить МК ATmega8, входящий в набор, на ATmega328 и припаять дополнительно стабилитрон на 2,5В TL431 и резистор 2,2 кОм так, как показано на схеме:

skhema pribora 3

В результате получится прибор с описанием которого можно ознакомиться здесь :). В архиве с прошивкой №3 упаковано всё тоже самое, что я и описывал выше, но с небольшой корректировкой! Всё дело в том, что при программировании программа Kazarma «залила» в МК содержимое файлов FLASH и EEPROM без вопросов, а вот фьюзы «заливать» отказалась. Может у меня руки кривые, а может ещё что-нибудь мне помешало. Поэтому я пошёл другим путём. Скачал программу AVRDUDESS (она есть в архиве), с её помощью мне удалось запрограммировать FLASH, EEPROM и фьюзы МК. Скриншот настройки фьюзов лежит в архиве. В инструкции на тестер подробно описано абсолютно всё! Отмечу только то, что в данной версии имеется опция автокалибровки прибора.

Всем удачи, мира, добра, 73!

Источник

Делаем своими руками прибор-тестер для проверки микросхем, радиокомпонентов, радиодеталей и транзисторов

Эта схема представляет собой недорогой электронный датчик и тестер компонентов, он питается от батареи 9 В, 300 мА. В нём не используются интегральные схемы (ИС), датчики или дисплеи. Схема может использоваться для проверки любых неисправных компонентов.

F4BWU3BHLA1SA97.LARGE F3ZJ59JHVTLTPM9.LARGE

В отличие от цифрового мультиметра, она не будет отображать значения компонентов. Она также может использоваться для проверки полярности некоторых компонентов прямого или обратного смещения. Схема может тестировать следующие компоненты: резисторы, переменные резисторы, диоды, термисторы, LDR, светодиоды, NPN и PNP транзисторы, переключатели, зуммеры, двигатели, динамики. Тестер радиодеталей может также использоваться, чтобы проверить непрерывность провода.

Шаг 1: Список компонентов

FB4M2LXHL94E677.LARGE

FY9CSBBHLA1S96D.LARGE

Компоненты и части прибора для проверки микросхем:

FY9CSBBHLA1S96D.LARGE

Оборудование для сборки тестера радиокомпонентов своими руками:

Шаг 2: Схема устройства

FIJLW3CHLA1S9CJ.LARGE

FT1EI3DHLA1SA9G.LARGE

Подключите следующие компоненты, поместив их в печатную плату в соответствии с приведенной схемой.

+ / Коллектор — используется как положительный вывод, а также как коллекторный вывод компонента.
База используется как базовый терминал компонента.
— / Излучатель используется в качестве отрицательной клеммы, а также клеммы эмиттера компонента.

FT1EI3DHLA1SA9G.LARGE

Вы также можете подключить динамик, как показано на второй схеме.

Шаг 3: Спайка схемы

F0T58K3HLA1S9EL.LARGE

FHFXN5RHLA1S9FH.LARGE

Очистите плату с помощью очистителя для печатных плат или жидкого флюса. Паяльником припаяйте компоненты к плате.

Предостережение: во время пайки используйте защитные очки. Будьте осторожны, не прикасайтесь к кончику паяльника, чтобы не получить ожоги.

Шаг 4: Итоговое тестирование

F1B4NRZHLA1S9NK.LARGE

F6CHG17HLA1S9NW.LARGE

Для проверки испытателя транзисторов подключите его между клеммами коллектора (+) и эмиттера (-). Если светодиод начинает тускнеть, значит, резистор работает.

ПРИМЕЧАНИЕ. Значения резистора в нашей схеме не могут быть определены.

Для проверки переменного резистора подключите его между клеммами коллектора (+) и эмиттера (-). Поверните кулачок, если яркость светодиода начинает изменяться в соответствии с изменением угла/направления кулачка, то считается, что переменный резистор работает.

Для проверки диода подключите его между клеммами коллектора (+) и эмиттера (-)в прямом смещении. В этом случае светодиод должен загореться. Теперь разместите диод в обратном смещении. Светодиод не должен загореться. Если и только если выполняются следующие условия, то считается, что диод работает.

Для термистора следуйте тем же инструкциям, что и для резистора.

ПРИМЕЧАНИЕ. При изменении температуры, сопротивление термистора будет меняться, и яркость светодиода тоже будет меняться.

Для LDR см. инструкцию по термистору.

ПРИМЕЧАНИЕ. В данном случае количество света, падающего на LDR, будет определять его сопротивление.

Для светодиодов, переключателей, зуммеров, двигателей, динамиков следуйте инструкциям для диодов. Если светодиод горит – значит всё работает. Если переключатель проводит ток во включенном положении — значит он работает. Если вал двигателя начинает вращаться – он работает. Если зуммер и динамик начинают издавать звуки — они работают.

F6CHG17HLA1S9NW.LARGE

Для транзисторов NPN и PNP подключите транзистор к контактам коллектора, основания и эмиттера. Если светодиод горит, то компонент работает.

Если вы выполнили все шаги и подключили все компоненты в соответствии со схемой, ваша схема должна быть полностью функциональной и готовой к тестированию.

1

Рассказываю как сделать какую-либо вещь с пошаговыми фото и видео инструкциями.

Источник

Универсальный электрический тестер радиодеталей: схема сборки многофункционального цифрового прибора

Занимаясь сборкой разных приборов, вы наверняка задумывались о том, что было бы неплохо иметь универсальный тестер радиокомпонентов, который мог бы тестировать практически всё, что попадается вам под руку. Что, если бы вы могли собрать такой девайс своими руками и уложиться в скромный бюджет?

F4A3BO6IJORXH8N.LARGE F5N0DG1IJORXDN2.LARGE

Тестером радиодеталей можно провести проверку практически всей электроники, исключая компоненты питания, так как они работают на токах более высокой силы и мощности, и наш микроконтроллер AVR не справится с ними. Кстати, наш проект будет базироваться на ATMEGA328 — тот же самый микроконтроллер, на котором базируется Ардуино Уно. Итак, наш многофункциональный цифровой тестер может проверять следующие устройства:

На этом список не заканчивается. Наш девайс может тестировать напряжение до 50V, у него есть счетчик частоты и генератор частоты. Также вы можете выявлять ИК коды просто соединив датчик TSOP с его тестовыми пинами.

И да, датчик не просто выявляет компоненты — он отображает нужные нам значения и свойства на дисплее.

Шаг 1: Заказываем необходимое железо

F2B70ATIJORXIZY.LARGE

Заметка: Для резисторов на 680 Ом и 470 кОм с допусками в 1% и 5% (не рекомендую их из-за менее точного результата) нужно будет внести изменения в код и постараться сделать так, чтобы все резисторы показали одинаковое значение на мультиметре.

Для тех, у кого возникли проблемы с поиском резисторов с допуском 0.1% или 1%, вы можете использовать допуск 5%. Просто купите 5-7 резисторов с таким допуском и выберите 3 из них, у которых совпадут значения на мультиметре.

Шаг 2: Схема и создание печатной платы

FV5LM66IJORXL7I.LARGE FUW5LQRIJORXLC8.LARGE F50MH52IJORWYP0.LARGE

Дизайн платы я спроектировал сам для травления в домашних условиях. Для этого я использовал бесплатную версию eagle software и приложил неотзеркаленную версию файлов. Вы можете скачать их и вытравить свою плату дома. Для тех, кто мало знаком с этим — поищите в интернете информацию о травлении плат с использованием FeCl3.

Также вы можете руководствоваться этими инструкциями:

Шаг 3: Нанесение обтравочной маски на печатную плату (опционально)

FPAUX7HIJORX1KL.LARGE FT4L0NAIJORX1NE.LARGE FRYFH7DIJORX1QT.LARGE

Если вы хотите нанести обтравочную маску, то можете следовать инструкции из этого видео

Я приложил маску прокладки для защиты дорожек компонентов при создании обтравочной маски.

Шаг 4: Сверление отверстий в печатной плате

FF6W3I8IJORX36P.LARGE

Для сверления отверстий в плате, можно использовать как ручную дрель, так и электрические её варианты.

Шаг 5: Припаиваем компоненты на плату

FKAYX5IIJPZ4R1B.LARGE FL2X5HKIJORXA8U.LARGE FVGCLKJIJORX3WZ.LARGE FL4590YIJORX42Z.LARGE

Будьте аккуратны при припаивании резисторов на 680 Ом и 470 кОм, т.к. они являются тестовыми резисторами!
Не наносите слишком много припоя на эти резисторы, так как это может вызвать дополнительные нежелательные емкость или сопротивление в цепи.
Не оставляйте на плате флюс после того, как припаяете компоненты! Это может повлечь искажение показателей, которые вы увидите на экране. Для чистки платы можно использовать изопропиловый спирт и хлопковую ткань.

Шаг 6: Подготовка корпуса

FOMZQ8MIJORX56H.LARGE FIPEIHMIJORX5E9.LARGE FWO3KCRIJYUYPMZ.LARGE FHZFESDIJRHRMTK.LARGE F8Z21S3IJORX5HV.LARGE

В качестве корпуса я использовал специальную пластиковую коробку для проектов. Я просверлил отверстия для разъемов и DC джека, а затем горячим ножом вырезал отверстие для дисплея.

Заметка: отпаяйте заземляющую клемму от кнопки на крутилке и припаяйте её к позитивной клемме светодиода вместе с проводами, идущими от печатной платы.

Апдэйт: Для LED_START на схеме

Соедините второй пин выключателя с положительным от светодиода

Шаг 7: Загрузка кода в микроконтроллер AVR

FF9U8MBIJQO93IV.LARGE

Файлы с кодом приложены ниже в zip-архиве. Вы можете скомпилировать их после внесения необходимых изменений в файлы конфигурации.

Откройте config.h и сделайте следующие правки:

Если у вас возникли проблемы при открытии зип-архива, то вот ссылка на Дропбокс
DROPBOX_ComponentTester_CODE

Апдейт: Если вы используете программатор usbasp, то вам не нужно править Makefile, иначе перейдите на строку 54 и поменяйте следующее:

programmer = usbasp на programmer =

Заметка: Я рассчитываю, что у вас уже предустановлен avrdude. Если его нет, то скачайте avrdude и установите его перед выполнением всех этих шагов.

Шаг 8: Сборка всего железа в один девайс

F2EJ7SJIJORX7VO.LARGE FDZNLHBIJORX825.LARGE FPTXJQTIJORX894.LARGE FIB66QMIJORX8CZ.LARGE

Перед финальной сборкой запустите всё устройство и протестируйте несколько компонентов для того, чтобы убедиться в работоспособности вашего девайса.

Шаг 9: Готово!

FAD5FSEIJORXCZM.LARGE FEHLE2JIJORXD0Z.LARGE FMNE7HHIJORXCWN.LARGE FHI2GA8IJRHRO4L.LARGE FMYHI6SIJWWL5Q3.LARGE

FESLYEWIJWWL5QD.LARGE F17CGAZIJRHRO1P.LARGE FETRKCCIJRHRO3G.LARGE

Итак, вы только что, своими руками создали свой собственный тестер. Теперь вы можете поставить его на своё рабочее место и использовать так часто, как это необходимо.

На фотографиях вы можете увидеть, как тестер работает в режиме генерации PWN, генерации квадратных волн, в режиме счетчика частот, детектора ИК кодов, калибровки и т. д.

1

Рассказываю как сделать какую-либо вещь с пошаговыми фото и видео инструкциями.

Источник

Измеритель напряжения пробоя полупроводников

Приветствую. Попался мне довольно полезный прибор для проверки пробойного напряжения полупроводников: транзисторов, диодов, тиристоров, стабилитронов и т.д.. Для мастерской это очень удобный инструмент, особенно когда нужно быстро найти аналог диода или транзистора. Не буду раскрывать все, слово автору.

Основные характеристики устройства:

Питающее напряжение, не стабилизированное — 11…15В;
Потребляемый ток холостого хода при питании 12В, контакты 5, 6 не замкнуты — 30мА;
Потребляемый ток при питании 12В, контакты 5, 6 замкнуты — 230 мА;
Потребляемый ток при питании 12В, контакты 5, 6 замкнуты, выход закорочен — 330 мА;
Максимальное напряжение на выходе — 1130В;
Выходной ток — 1 мА.

Схема измерителя напряжения пробоя полупроводников
proboi 09022020 01

В основе работы устройства заложен принцип обратимого неразрушающего пробоя. Это достигается за счёт ограничения тока, протекающего через полупроводник, что не приводит к его тепловому пробою и выходу из строя. Примеры подключения проводников для проверки:

proboi 09022020 02

Повышающий преобразователь построен на основе широко распространённого ШИМ-контроллера DA1 TL494. Изготовить для него повышающий трансформатор Т1 можно, конечно, самостоятельно, но это трудоёмко и утомительно, поэтому для этой цели использован готовый, предназначенный для подсветки мониторов лампами холодного катода (CCFL).
Однако из-за чрезмерного коэффициента трансформации, который необходим для первоначального поджига лампы, регулирование выходного напряжения осуществляется не ШИМ-контроллером DA1, а внешним понижающим преобразователем DA2 LM2576-ADJ. Сигнал обратной связи по выходному напряжению снимается с делителя R27…R30. Преобразователь DA2 сравнивает его с внутреннем опорным напряжением 1,23В, изменяя соответствующим образом питание первичных обмоток трансформатора Т1. При таком способе регулирования, в отличие от ШИМ, удаётся уменьшить амплитуду импульсов на вторичной обмотке трансформатора, что уменьшает потери, повышает КПД и надёжность работы в целом. Плавный запуск и ограничение тока заряда конденсаторов С15…С17 на уровне около 5 мА осуществляет с помощью токоизмерительного резистора R23 встроенный ОУ контроллера DA1. Супрессор (защитный диод) VD18 ограничивает максимальное напряжение на входе 1 DA1 и защищает резистор R23 от перегрузок во время переходных процессов.
Элементы R3, C3 задают значение частоты преобразования около 68 кГц. В данном случае относительно высокая частота вызвана стремлением уменьшить ток намагничивания холостого хода трансформатора из-за низкой индуктивности первичных обмоток.
Элементы R4, R5, R7, R8, VD1, VD2, VT1…VT4 обеспечивают крутые фронты для переключения транзисторов VT5 и VT6, что снижает потери.
Снабберные (ограничительные) цепи R9, R10, C11, C12, VD4, VD5 поглощают и рассеивают энергию паразитного высоковольтного выброса индуктивности первичных обмоток, предохраняя ключи VT5, VT6.
Ограничение (стабилизацию) выходного тока осуществляют элементы R31, R32, R33, VD19, VD20, VT7.
Элементы R31, R32 обеспечивают начальное смещение для транзистора VT7, стабилитрон VD19 ограничивает напряжение затвор — исток на уровне 15В. Ток, проходящий через резистор R33, вызывает на нём падение напряжения до уровня, при котором транзистор VT7 начинает закрываться. А поскольку напряжение затвор — исток фиксируется стабилитроном VD19, наступает баланс между напряжением закрытия VT7 и падением напряжения на резисторе R33, что и обеспечивает стабилизацию тока. Ток стабилизации в данном случае равен напряжению открытия транзистора VT7, поделённого на сопротивление R33. Стабилитрон VD20 защищает транзистор VT7 при коротком замыкании на корпус.
Подача тока на исследуемый элемент осуществляется замыканием кнопкой вывода 5 DA2 на корпус, контакты 5 и 6 на плате.

Резисторы R11…R22 выравнивают токи утечки диодов VD6…VD17, которые из-за их последовательного включения и разброса параметров могут превысить значение максимального допустимого обратного напряжения для одного диода, а резисторы R24…R26 компенсируют и выравнивают токи утечки последовательно соединённых конденсаторов C15…C17. Резистор R35 гарантированно отключает DA2, обесточивая трансформатор Т1 и снимая напряжение на выходе устройства. Некоторые экземпляры LM2576 могут работать без него неустойчиво.

Ключевой элемент схемы — трансформатор Т1. Совершенно не обязательно применять для устройства именно этот тип. Подойдёт практически любой, имеющий две первичные обмотки и одну вторичную. Его можно, как и в этом конкретном случае, «добыть» из неисправного монитора. Как правило, чем больше диагональ монитора, тем выше необходимо напряжение на выходе, и тем больше будет соотношение числа витков обмоток.
Найти подробную спецификацию трансформатора в Интернете практически невозможно, так что для указанного в схеме трансформатора параметры следующие: для первичных обмоток — индуктивность 90 мкГн, сопротивление по постоянному току 0,1 Ом, добротность на частоте 10 кГц — 42; для вторичной обмотки — индуктивность 1,016 мГн, сопротивление по постоянному току 724 Ом, добротность на частоте 10 кГц — 84.

proboi 09022020 03

Резисторы R11…R22, R24…R26 подойдут угольные импортные CF-200 2 Вт номиналом до 1 МОм. Для делителя R27, R28 лучше использовать металлооксидные резисторы — МЛТ-2, С2-33Н, С2-29В, МО-200 и аналогичные. С ними и точность лучше, и временные параметры стабильней. Придерживаться точных номиналов делителя на схеме не обязательно, можно подобрать свои — выходное напряжение рассчитывается по формуле Uвых=((R27+R28)/(R29+R30)+1)*Uоп, где Uоп — опорное напряжение у DA2, равное 1,23В.

Первоначально устройство собирается без установки трансформатора Т1. Сопротивление R29 выкручивается до максимального значения. Подстройкой R1 устанавливается минимальная длительность импульсов на затворах транзисторов VT5, VT6. Осциллографом проверяется работоспособность схемы, после чего устанавливается трансформатор Т1.
К выходу устройства подключается вольтметр. Тут необходимо оговориться — хотя большинство мультиметров имеют предел измерения постоянного тока в 1000В, серьёзно рассчитывать на это не стоит. Из тех мультиметров, что мне попадались, высокоомный резистор в делителе напряжения, судя по габаритам, имеет мощность 1 Вт. Это означает, что его максимальное рабочее напряжение равно 500В, что объективно мало. 10 МОм входного сопротивления тоже не много для высоких напряжений. Так что измерять напряжение более 500В я бы поостерёгся.
Безопаснее использовать внешний высокоомный (100 МОм или более) делитель с повторителем напряжения на ОУ, выход которого уже подключается к мультиметру, либо к самодельному вольтметру. Например:
proboi 09022020 04

После установки трансформатора на плату и включения устройства настраивается максимальное выходное напряжение измерителя. Задача сводится к установке максимальной ширины импульсов на выходе ключей VT5, VT6 при минимальном напряжении питания трансформатора Т1. Подстроечным резистором R29 устанавливается верхний предел выходного напряжения, а резистором R1 — коэффициент заполнения управляющих импульсов ключей VT5, VT6. Поочерёдной подстройкой резисторов R1 и R29 добиваются необходимого значения выходного напряжения. В моём случае при выходном напряжении 1130В напряжение питания трансформатора получилось 9,49В.
Для установки максимального значения выходного тока к выходу обесточенного измерителя подключают миллиамперметр. При включении DA2 измеряемое значение тока может лежать в пределах 0,6…1,2 мА. Точное значение не существенно, необходимо попасть в диапазон 0,6…1 мА путём подбора номинала резистора R33. Если необходимо измерять падение напряжения в заданном диапазоне токов, можно последовательно с R33 включить переменный резистор 10 кОм.

Внешний вид собранного устройства:
proboi 09022020 05proboi 09022020 06

Печатная плата измерителя по этой ссылке

Примеры измерения максимальных значений обратных напряжений:

Супрессор (защитный диод) 1,5КЕ400АС
proboi 09022020 07

Диодная сборка 16С20
proboi 09022020 08

Диод 1N4148proboi 09022020 09

Диод 1N5819proboi 09022020 10

Транзистор 2SA1943proboi 09022020 11

Транзистор E13009proboi 09022020 12

Диод FR605proboi 09022020 13

Транзистор IRF5210proboi 09022020 14

Транзистор IRF9640 proboi 09022020 16Транзистор IRFP450proboi 09022020 15

А вот и подделка. MJE350. Должно быть не менее 300В.
proboi 09022020 17
А в реальной схеме, с учётом сопротивления в цепи базы, максимальное напряжение коллектор — эмиттер будет ещё меньше…
В заключение хочу обратить внимание на критическую опасность для жизни предлагаемого устройства. Высокое напряжение на выходе измерителя, пусть даже питаемого с выпрямителя с суммарной ёмкостью сглаживающего фильтра 3,3 мкФ, может оказаться фатальным. Так что будьте осторожны.

Вот такой полезный приборчик получился. Если нравятся материалы и не хотите ничего пропустить, подписывайтесь на обновления: Вконтакте, Одноклассниках или в правой колонке введите свой эмейл и получайте уведомления на электронную почту.
Автор Grenik. Вот ссылка на источник статьи.

Источник

Поделиться с друзьями
admin
Здоровая спина
Adblock
detector