Тестер конденсаторов esr своими руками

Приставка на одном транзисторе для измерения ESR цифровым мультиметром

ESR – Equivalent Series Resistance (Эквивалентное Последовательное Сопротивление) – один из важнейших параметров конденсатора. Особенно чувствительно его увеличение в процессе эксплуатации оборудования для импульсных схем источников питания.

Предлагаемая схема приставки-зонда к цифровому мультиметру позволяет проверять конденсаторы на ESR с помощью мультиметра в режиме измерения падения напряжения – без выпаивания из схемы, без собственного питания и, конечно, отображая значение тем же мультиметром. С одним уточнением: мы не обращаем внимания на показания в старшем разряде. Соответственно, следующая цифра (после запятой) – единицы Ом, за ней – десятые доли Ома и сотые, если они кому-нибудь интересны.

Основа схемы – генератор Хартли. При подключении к мультиметру генератор возбуждается на частоте около 80 кГц. При этом потребление тока от мультиметра настолько мало, что на шкале прибора показывает то же, что и при разомкнутых щупах «+» и «-».

izmer196 1

С обмотки III трансформатора снимается синусоидальное напряжение с амплитудой около 120 mV. Малый размах измерительного напряжения (в процессе измерения ещё уменьшается) позволяет проверять конденсаторы без выпаивания из схемы, а разрешение до сотой доли Ома, при определённых навыках, – находить худшие конденсаторы из включенных параллельно за счёт ненулевой индуктивности проводников.

Резистор R1 предназначен для того, чтобы генерация не затухала при нулевом ESR. Подстроечным резистором P2 устанавливается значение «1,000» на шкале мультиметра при замкнутых щупах зонда. Данные трансформатора приводятся для цифрового мультиметра DT890B. Сердечник — ферритовое кольцо из энергосберегающих ламп внешним диаметром 10мм, внутренним 6мм, высотой 3мм. Обмотки равномерно распределены по кольцу, последней наматывается обмотка III. Число витков: I – 8, II – 80, III – 5. Диаметр и марка провода не критичны.

Для других мультиметров возможно придётся подобрать число витков обмотки III для масштабирования шкалы. В опытном образце имитацией ESR резисторами получены следующие результаты (первая цифра – сопротивление резистора, вторая – показания мультиметра):

0 – 1,000 1 – 1,120 2 – 1,260 3 – 1,360 4 – 1,430 5 – 1,480

Линейность измерений невысока, но достаточна для практического применения.

Ввиду простоты схемы печатная плата не приводится. Щупы приставки-зонда — из стальной облуженой пружинящей проволоки диаметром 1 мм, длиной 50-70 мм, припаяны непосредственно к печатной плате. Схема размещена в корпусе от разъёма DB-9 (COM-порт и подобные) с выведенными проводами «+» и «-», которые заканчиваются «крокодилами» для соединения со щупами мультиметра.

Источник

ESR-метр

В этой статье мы с вами будем собирать ESR-метр. В первый раз слышите слово “ESR”? А ну-ка бегом читать эту статью!

Для чего нужен ESR-метр

Итак, для чего нам вообще собирать ESR-метр? Для тех, кто поленился читать статью про ESR давайте вспомним, чем оно нам вредит. Дело в том, что сейчас почти во всей электронной аппаратуре используются импульсные блоки питания. В этих импульсных блоках питания “гуляют” высокие частоты и некоторые из этих частот проходят через электролитические конденсаторы. Если вы читали статью конденсатор в цепи постоянного и переменого тока, то наверняка помните, что высокие частоты конденсатор пропускает через себя почти без проблем. И проблем тем меньше, чем выше частота. Это, конечно, в идеале. В реальности же в каждом конденсаторе “спрятан” резистор. А какая мощность будет выделяться на резисторе?

P – это мощность, Ватт

I – сила тока, Ампер

R – сопротивление, Ом

А как вы знаете, мощность, которая рассеивается на резисторе – это и есть тепло 😉 И что тогда у нас получается? Конденсатор тупо превращается в маленькую печку)). Нагрев конденсатора – эффект очень нежелательный, так как при нагреве в лучшем случае он меняет свой номинал, а в худшем – просто раскрывается розочкой). Такие кондеры-розочки использовать уже нельзя.

Вздувшиеся электролитические конденсаторы – это большая проблема современной техники. Очень много отказов в работе электроники бывает именно по их вине. Визуально это проявляется в появлении припухлости в верхней части конденсатора. Видите небольшие прорези на шляпе этих конденсаторов? Это делается для того, чтобы такой конденсатор не разрывался от предсмертного шока и не забрызгивал всю плату электролитом, а ровнёхонько надрывал тонкую часть прорези и испускал тихий спокойных выдох. У советских конденсаторов таких прорезей не было, и поэтому если они и бахали, то делали это громко, эффектно и задорно)))

Но иногда бывает и так, что внешне такой конденсатор ничем не отличается от простых рабочих конденсаторов, а ESR очень велико. Поэтому, для проверки таких конденсаторов и был создан прибор под названием ESR-метр. У меня например ESR-метр идет в комплекте с Транзистор-метром:

IMG 2541

Минус данного прибора в том, что им можно замерять ESR только демонтированных конденсаторов. Если замерять прямо на плате, то он выдаст полную ахинею.

Схема и сборка

В интернете очень давно гуляет схема простенького ESR-метра, а точнее – приставки к мультиметру. С помощью нее можно спокойно замерить ESR конденсатора, даже не выпаивая его из платы. Давайте же рассмотрим схемку нашей приставки. Кликните по ней, и схема откроется в новом окне и в полный рост:

%D0%BC%D0%B3%D1%82%D1%84

Вы легко его узнаете по розовой окраске. Хотя бывают и другого цвета, но в основном розовый.

Что это за “фрукт”? МГТФ расшифровывается как Монтажный, Гибкий, Теплостойкий, в Фторопластовой изоляции. Этот провод отлично подходит для электронных поделок, так как при пайке его изоляция не плавится. Это только один из плюсов.

Обратную сторону с проводами МГТФ я показывать не буду). Там ничего интересного нет).

После сборки макетная плата выглядит вот так:

IMG 4957

Микросхемы по привычке всегда ставлю в панельки:

При своей стоимости, панельки позволяют быстро сменить микросхему. Особенно это актуально для дорогих микроконтроллеров. Вдруг понадобится МК для других целей?)

Для подачи питания с батарейки на платку, я воспользовался стандартной клеммой от старого мультиметра:

Как быть, если у вас нет такой клеммы, а подать питание с Кроны необходимо? В таком случае, у вас наверняка есть старая батарейка Крона, так ведь? Аккуратно вскрываем корпус, снимаем клеммы батарейки, подпаиваем проводки и у нас готова клемма для подключения к новой батарейке. На крайний случай их можно также купить на Али. Выбор огромный.

Прибор выполнен в виде приставки к любому цифровому мультиметру:

Здесь есть одно “но”. Так как мы измеряем на пределе 200 милливольт постоянного напряжения (DCV), то и значения мы получим не в Омах или миллиомах, а в милливольтах, которые затем, сверяясь со значениями полученными при калибровке прибора, мы должны будем перевести в Омы.

А вот и мой самопальный щуп:

Подобные приборы не любят длинных проводов-щупов, идущих к ножкам конденсатора, и поэтому я был вынужден сделать подобие пинцета, собранное из двух половинок фольгированного текстолита.

Внутри корпуса платка выглядит примерно вот так:

Провода, идущие к пинцету, закреплены каплей термоклея. Между щупами, идущими к мультиметру, стоит конденсатор керамика 100 нанофарад с целью снизить уровень помех. В схеме применен подстроечный резистор на 1,5 Килоома. С помощью этого резистора мы и будем калибровать наш приборчик.

Калибровка прибора

После того как все собрали, приступаем к калибровке (настройке) нашего ESR-метра пошагово:

1)Если у вас есть осциллограф, замеряем на измерительных щупах напряжение с частотой 120-180 КилоГерц. Если замеряемая частота не укладывается в этот диапазон, то меняем значение резистора R3.

2) Цепляем мультиметр и ставим его крутилку на измерение милливольт постоянного напряжения.

3) Берем резистор номиналом в 1 Ом и цепляем его к измерительным щупам. В данном случае, к нашему самопальному пинцету.

4) Добиваемся того, чтобы мультиметр показал значение в 1 милливольт, меняя значение подстроечного резистора R1

5) Теперь берем сопротивление 2 Ома, и не меняя значение R1 записываем показания мультиметра

6) Берем 3 Ома и снова записываем показания и тд. Думаю, до 8-10 Ом вам таблички хватит вполне.

Например, мы можем выставить соответствие 1 милливольт – это 1 Ом, и т. д., хотя я предпочел настроить 4,8 милливольт – 1 Ом, для того чтобы была возможность точнее измерять низкие значения сопротивления. При замыкании щупов – контактов пинцета на дисплее мультиметра значение 2,8 милливольт. Сказывается сопротивление проводов-щупов. Это у нас типа 0 Ом ;-).

Приведу для ознакомления значения измерений низкоомных резисторов: при измерении резистора 0,68 Ом значения равны 3,9 милливольт, 1 ом – 4,8 милливольт, 2 Ома – 9,3 милливольта. У меня получилась вот такая табличка, которую я потом и наклеил на свой прибор

111

При измерении сопротивления в 10 Ом на экране уже показание 92,5 миллиВольт. Как мы видим, зависимость не пропорциональная.

После того, как я сделал замеры, смотрю в другую табличку:

Слева – номинал конденсатора, вверху – значение напряжения, на которое рассчитан этот конденсатор. Ну и, собственно, в таблице максимальное значение ESR конденсатора, который можно использовать в ВЧ схемах.

Давайте попробуем замерить ESR у двух импортных и одного отечественного конденсатора

Как вы видите, импортные конденсаторы обладают очень маленьким ESR. Советский конденсатор показывает уже большее значение. Оно и не удивительно. Старость не в радость).

Поправки к схеме

1) Для более-менее точных измерений, желательно, чтобы питание нашего ESR-метра было всегда стабильное. Если батарейка разрядится хотя бы на 1 Вольт, то показания ESR также будут уже с погрешностью. Так что лучше постарайтесь давать питание на ESR-метр всегда стабильное. Как я уже сказал, для этого можно использовать внешний блок питания или собрать схемку на 7809 микросхеме. Например, блок питания можно собрать по этой схеме.

2) Показания, которые выдает наша самоделка, не говорят о том, что наш самопальный прибор с великой точностью замеряет ESR. Скорее всего, его можно отнести к пробникам. А что делают пробники? Отвечают в основном на два вопроса: да или нет ;-). В данном случае прибор “говорит”, можно ли использовать такой конденсатор или лучше все-таки поставить его в НЧ (НизкоЧастотную) схему.

Данный пробник может собрать любой, даже начинающий радиолюбитель, если у него вдруг возникнет потребность заняться ремонтами. А вот и видео его работы:

Источник

Здравствуйте уважаемые подписчики и читатели моего канала.

Специальных знаний в области электроники у меня нет (кроме знания закона Ома и ещё пары законов Кирхгофа), но это скорее из курса электротехники. Зато есть увлечённость, точнее сказать хобби, и поэтому моя голова не даёт покоя моим рукам.

Сам я ни чего придумать или изобрести наверное не смогу, или не могу, но бывает желание повторить то, что кем то изобретено или придумано. Иногда в «это» вношу какие-то свои изменения, иногда «это» начинает работать, даже с какими-то моими изменениями, так и случилось однажды.

Заинтересовал меня один из приборов, который можно сделать самому. Называется он ESR-метр. В интернете прочитал о нём несколько статей, просмотрел несколько схем, немного разобрался в принципе его работы и решил повторить.

Если разобраться – сложного в нём ничего нет. Приведу его блок-схему.

Из рисунка всё понятно. Генератор, трансформатор, выпрямитель (или детектор), измерительный прибор.

Генератор решил собрать на к155ла3 – его схема очень проста, а подбором номиналов всего одного резистора и одного конденсатора можно добиться любой частоты следования вырабатываемых им импульсов.

Трансформатор – ничего выдумывать не стал, решил использовать то, что есть. Взял первый попавшийся – и он «заработал». А первым попавшимся оказался трансформатор межкаскадный строчный, из какого-то разобранного импортного телевизора, но подойдёт, наверное, даже со старого советского, типа ТМС-21. Вот как они могут выглядеть.

Измерительный прибор – от магнитофона, индикатор уровня записи.

Начертил схему и стал собирать.

Трансформатор подключил так: ту обмотку, у которой большее сопротивление – в сторону измерительного прибора. Больше про схему ничего сказать не могу, потому что сам в этом ничего не понимаю, расскажу, как собирал, и что из этого получилось.

Сначала собрал «макет», кое что по нескольку раз перепаял, кое что (резисторы и конденсаторы) несколько раз поменял – и схема заработала.

Сказать по правде, я этому очень обрадовался, и решил подобрать для «прибора» корпус.

На глаза попался стрелочный мультиметр.

Переменный резистор, который был в мультиметре для калибровки шкалы, подошёл вместо резистора R2, что на схеме выше. Я его немного покрутил и выставил стрелку прибора в крайнее максимальное (правое) положение (при включённом питании).

Провода для «щупов» лучше использовать сечением побольше, дальше узнаете почему.

Решил произвести его «градуировку», для этого спаял гирлянду из нескольких резисторов в 1 Ом и нанёс деления прямо на стекло прибора маркером.

Источник

Простые схемы измерителей ESR оксидных конденсаторов

В статье приводятся варианты схемы простого прибора, позволяющего находить неисправные электролитические конденсаторы, не выпаивая их из схемы.

Кроме того, данным прибором можно «прозванивать» электрические цепи, проверять прохождение сигнала в устройствах ВЧ и НЧ, оценивать моточные изделия на предмет наличия короткозамкнутых витков.

Несколько лет назад в Интернете автор обнаружил схему несложного прибора, позволяющего выявлять неисправные электролитические конденсаторы.

Заинтересовавшись этим, автор решил собрать и испытать этот «измеритель ESR». Результат превзошел все ожидания: телевизор Toshiba, находившийся в ремонте несколько дней (не запускался БП), был отремонтирован буквально за 5 минут.

С помощью этого прибора были обнаружены два электролитических конденсатора с повышенным ESR, которые до этого были выпаяны из платы и проверены обычным тестером на «подергивание стрелки» Стрелка отклонялась, и исправность конденсаторов не вызывала сомнений. После замены конденсаторов телевизор нормально заработал.

Теория

Итак, обо всем по порядку.

Диэлектриком в таких конденсаторах является очень тонкая оксидная пленка, образующаяся на поверхности алюминиевой фольги при подаче на обкладки напряжения определенной полярности.

К этим ленточным обкладкам присоединяются проволочные выводы. Ленты сворачиваются в рулон, и все это помещается в герметичный корпус. Благодаря очень малой толщине диэлектрика и большой площади обкладок оксидные конденсаторы при малых габаритах имеют большую емкость.

В процессе работы внутри конденсатора протекают электрохимические процессы, разрушающие место соединения вывода с обкладками.

Контакт нарушается, и в результате появляется так называемое переходное сопротивление, достигающее значения десятков ом и более, что эквивалентно включению последовательно с конденсатором резистора, причем последний находится в самом конденсаторе.

В этом случае возрастает реактивное емкостное (Хс) сопротивление конденсатора, так как емкость последнего уменьшается.

Наличие последовательного сопротивления негативно сказывается на работе устройства, нарушая логику работы конденсатора в схеме. (Если включить, например, последовательно с конденсатором фильтра выпрямителя резистор сопротивлением 10. 20 Ом, на выходе последнего резко возрастут пульсации выпрямленного напряжения.).

Особенно сильно сказывается повышенное значение ESR конденсаторов (причем всего до 3. 5 Ом) на работе импульсных блоков питания, выводя из строя более дорогостоящие транзисторы или микросхемы.

Принцип работы описываемых измерителей ESR основан на измерении емкостного сопротивления конденсатора, т.е., по сути, это омметр, работающий на переменном токе. Из курса радиотехники известна формула:

shema ra200608 6

Выбор частоты измерения 100 кГц обусловлен тем, что многие фирмы, производящие конденсаторы с низким ESR, максимальный импеданс конденсатора (т.е. ESR) задают именно на этой частоте.

Следует отметить, что формула (1) справедлива для переменного тока синусоидальной формы, описываемые же измерители работают с генераторами прямоугольных импульсов. Но, как было замечено выше, нам нужно не точность измерений, а возможность различать конденсаторы с ESR, например, 0,5 и 5 Ом.

Схема простейшего измерителя ESR

Рассмотрим работу схемы простейшего измерителя ESR, показанную на рис.1. На микросхеме DD1 собран генератор прямоугольных импульсов (элементы D1.1, D1.2) и буферный усилитель (элементы D1.3, D1.4). Частота генерации определяется элементами С1 и R1 и приблизительно равна 100 кГц.

shema ra200608 7

Рис. 1. Схема простейшего измерителя ESR.

Прямоугольные импульсы через разделительный конденсатор С2 и резистор R2 подаются на первичную обмотку повышающего трансформатора Т1. Во вторичную обмотку после выпрямителя на диоде VD1 включен микроамперметр РА1, по шкале которого отсчитывают значение ESR.

Конденсатор С3 сглаживает пульсации выпрямленного напряжения. При включении питания стрелка микроамперметра отклоняется на конечную отметку шкалы (добиваются подбором резистора R2). Такое ее положение соответствует значению «бесконечность» измеряемого ESR.

Если подключить исправный оксидный конденсатор параллельно обмотке I трансформатора Т1, то благодаря низкому емкостному сопротивлению (помните, при С=10 мкФ, Хс=0,16 Ом на частоте 100 кГц) конденсатор зашунтирует обмотку, и стрелка измерителя приблизится к нулю.

При наличии же в измеряемом конденсаторе какого-пибо из описанных выше дефектов, в нем повышается значение ESR. Часть переменного тока потечет через обмотку, и стрелка будет все меньше отклоняться от значения «бесконечность».

Чем больше ESR, тем больший ток протекает через обмотку и меньший через конденсатор, и тем ближе к положению «бесконечность» находится стрелка.

Шкала прибора нелинейная и напоминает шкалу омметра обычного тестера. В качестве измерительной головки можно использовать любой микроамперметр на ток до 500 мкА, хорошо подходят головки от индикаторов уровня записи магнитофонов. Градуировать шкалу не обязательно, достаточно засечь, где будет находиться стрелка, подключая калибровочные резисторы.

Благодаря разделительному повышающему трансформатору напряжение на измерительных щупах прибора не превышает значения 0,05. 0,1 В, при котором еще не открываются переходы полупроводниковых приборов. Это дает возможность проверять конденсаторы, не выпаивая их из схемы.

Доработанная схема измерителя

Схема, показанная на рис. 1, вполне работоспособна, однако имеет один существенный недостаток. Нетрудно заметить, что если к схеме подключить неисправный конденсатор, имеющий пробой диэлектрика, стрелка прибора так же, как и в случае проверки исправного конденсатора, приблизится к нулевой отметке. Для устранения указанного недостатка в схему введен переключатель S1 (рис.2).

shema ra200608 8

Рис. 2. Модернизированная схема измерителя ESR для оксидных конденсаторов.

В верхнем положении контактов переключателя (как показано на схеме) прибор работает как измеритель ESR, и стрелка измерительной головки отклоняется под воздействием выпрямленного напряжения

генератора. В нижнем же положении контактов переключателя S1 стрелка измерителя отклоняется под воздействием постоянного напряжения источника питания, а измеряемый конденсатор подключают параллельно головке.

Процедура измерения выглядит так: подключают щупы к измеряемому конденсатору и наблюдают за стрелкой. Допустим, стрелка приблизилась к нулю, по части ESR конденсатор исправен. Переключают S1 в нижнее положение.

При исправном конденсаторе стрелка измерительного прибора должна вернуться в положение «бесконечность», так как конденсаторы не проводят (вернее, не должны проводить) постоянный ток. Пробитый же конденсатор зашунтирует головку, и стрелка измерителя останется в нулевом положении. Отклонения стрелки на конечную отметку шкалы на постоянном токе (в нижнем положении S1) добиваются подбором резистора R3.

Для защиты измерительной головки от механических повреждений импульсом разрядного тока (при случайном подключении измерительных щупов к заряженному конденсатору) служат кремниевые диоды VD2, VD3. Заряженный конденсатор будет разряжаться через обмотку I трансформатора Т1.

Будьте внимательны, не подключайте щупы к заряженному конденсатору! Автор как-то подключил прибор к конденсатору на 220 мкФх400 В в схеме компьютерного монитора, только что отключенного от сети. Прибор выдержал, но щупы приварились к выводам конденсатора. Пришлось менять «цыганские» иголки, которые служили щупами.

Естественно, подключать щупы к измеряемому конденсатору нужно в верхнем положении переключателя S1, чтобы он разрядился через обмотку трансформатора, в противном случае можно сжечь головку и диоды! Чтобы не задумываться, в каком положении находится переключатель, в качестве S1 лучше применить кнопку (или переключатель типа П2К) без фиксации. Подключают щупы, измеряют ESR, конденсатор разрядился, затем нажимают кнопку и проверяют конденсатор на пробой.

Наличие переключателя S1 дает возможность «прозванивать» проводники печатной платы, позволяя выявлять обрывы, микротрещины или случайные замыкания между дорожками.

На переменном токе этого сделать нельзя, так как, например, из-за наличия в схеме блокировочного конденсатора прибор покажет замыкание между общим проводом и проводником питания.

Существуют и другие области применения прибора. С его помощью, благодаря наличию генератора импульсов, можно проверять исправность трактов РЧ и ПЧ радиоприемников и телевизоров, а также видеоусилители, формирователи импульсов и т.д.

Спектр гармоник сигнала прямоугольной формы генератора, работающего на частоте 100 кГц, простирается вплоть до сотен мегагерц. Телевизор реагирует на подключение щупов прибора даже к антенному входу ДМВ диапазона! В диапазоне МВ на экране телевизора отчетливо просматриваются горизонтальные полосы.

Третий вариант схемы измерителя ESR

Чтобы иметь возможность проверять тракты ЗЧ, в схему прибора необходимо ввести еще один переключатель, с помощью которого частота генератора импульсов понижается до 1 кГц.

Кроме того, измерения показали, что потребляемый прибором ток не превышает 3. 5 мА, и его лучше сделать малогабаритным переносным, чтобы иметь всегда под рукой. Питать такой вариант прибора можно от батареи типа «Крона» через маломощный 5-вольтовый стабилизатор.

Схема такого варианта прибора показана на рис.З. Переключателем S2 выбирают частоту генератора, а переключателем S3 включают питание прибора.

shema ra200608 9

Рис. 3. Схема самодельного измерителя ESR с питанием от батареи.

Длительная работа с прибором позволила выявить еще один «скрытый резерв»: с помощью него можно проверять катушки индуктивности (обмотки трансформаторов) на наличие короткозамкнутых витков.

При этом прибор измеряет все то же реактивное сопротивление, только на этот раз индуктивное Х|_. Индуктивное сопротивление можно рассчитать по формуле:

shema ra200608 10

Ели такую катушку подключить к нашему прибору, стрелка измерителя практически останется в положении «бесконечность», отклонение будет едва заметно. Наличие же в обмотке катушки короткозамкнутого витка (витков) приведет к резкому уменьшению индуктивного сопротивления, до единиц ом, и стрелка прибора в этом случае покажет какое-то малое сопротивление.

Индуктивность катушек, применяемых в радиотехнических устройствах, может находиться в очень широких пределах: от единиц микрогенри в ВЧ дросселях до десятков генри в силовых трансформаторах.

Поэтому проверка катушек с большой индуктивностью на частоте 100 кГц может вызвать затруднения. Чтобы проверять такие катушки (например, первичные обмотки маломощных силовых трансформаторов), частоту генератора нужно установить в 1 кГц (переключателем S2).

Детали

В качестве провода для первичной обмотки идеально подходит монтажный провод марки МГТФ-0,5 или одножильный провод в ПВХ-изоляции («кроссировка»).

Диод VD1 обязательно должен быть германиевым, например, типов Д9, ДЗ10, Д311, ГД507. Кремниевые диоды имеют большое пороговое напряжение открывания (0,5. 0,7 В), что приведет к сильной нелинейности шкалы прибора в области измерения малых сопротивлений. Германиевые же диоды начинают проводить ток при прямом напряжении 0,1. 0,2 В.

Печатные платы для прибора не разрабатывались. Все варианты прибора собирались на макетных печатных платах с шагом отверстий 2,5 мм (продаются на радиорынках) методом навесного монтажа.

Правильно собранный прибор начинает работать сразу, нужно лишь подобрать сопротивление резисторов, как было указано выше. Чтобы облегчить настройку, в качестве резисторов R2 и R3 можно использовать подстроечные резисторы.

Задающий генератор может быть собран и по другой схеме. В радиолюбительской литературе подобные схемы встречаются часто. Важно, чтобы частота сигнала генератора была около 100 кГц. Можно вообще обойтись без внутреннего генератора, используя уже имеющийся в распоряжении стационарный генератор и стрелочный авометр, а прибор оформить в виде приставки к ним.

Градуировка прибора

Градуируют прибор с помощью нескольких постоянных резисторов сопротивлением 1 Ом. Замкнув щупы, отмечают, где будет нулевая отметка шкалы. Из-за наличия сопротивления в соединительных проводах, она может не совпадать с положением стрелки при выключенном питании.

Поэтому провода, идущие к щупам, должны быть по возможности короткими, сечением 0,75. 1 мм2. Далее подключают два параллельно соединенных резистора на 1 Ом и отмечают положение стрелки, соответствующее измеряемому сопротивлению 0,5 Ом.

Затем подключают резисторы но 1, 2, 3, 5 и 10 Ом и отмечают положения стрелки при измерении этих сопротивлений. На этом можно остановиться, так как электролитические конденсаторы емкостью более 4,7 мкФ с ESR больше 10 Ом хотя и могут работать, например, в качестве разделительных в УНЧ, но, скорее, не очень долго.

Работа с прибором

Автор не разделяет мнения, что электролитические конденсаторы с ESR более 1 Ом всегда нужно выбрасывать. Значение ESR новых исправных конденсаторов зависит от фирмы-производителя, типа, свойств применяемых при изготовлении материалов и др.

Как было отмечено выше, в особо ответственных узлах радиоаппаратуры, например в импульсных блоках питания, схемах развертки телевизоров, должны использоваться качественные конденсаторы с ESR не более 0,5. 1 Ом.

Для междукаскадных конденсаторов НЧ цепей эти требования могут быть не такими жесткими. Именно в УНЧ, собранном пару лет назад, благополучно работают упомянутые выше миниатюрные электролитические конденсаторы.

Для проверки возможности прибора обнаруживать короткозамкнутые витки проведите такой эксперимент: подключите прибор к исправному дросселю, например, ДМ-0,1 с индуктивностью 20. 100 мкГн на измерительной частоте 100 кГц.

Стрелка прибора слегка отклониться в сторону уменьшения измеряемого сопротивления. Затем намотайте поверх дросселя 2-3 витка монтажного провода со снятой изоляцией и скрутите вместе его концы.

Снова подключите прибор. На этот раз стрелка должна отклониться на значительно больший угол, показывая сопротивление несколько ом. Следует подчеркнуть, что функция проверки катушек индуктивности является дополнительной для данного прибора, и полученные результаты могут быть весьма приблизительными.

Измеритель ESR конденсаторов, четвертый вариант

В заключение автор приводит схему еще одного варианта прибора (рис.4) Предпосылки для создания этого «монстра» были следующие: наличие корпуса от неисправного пульта управления видеомагнитофона (с питанием от двух батареек типоразмера ААА, 3 В); наличие много лет лежащего без применения кварца на 119 кГц; наличие не реализованных много лет ИМС К561ЛА7.

shema ra200608 11

Рис. 4. Принципиальная схема измерителя ESR для оксидных конденсаторов на микросхемах К176ЛА7.

Собирать мультивибратор на транзисторах не хотелось (слишком много дискретных элементов), поэтому была проведена проверка работоспособности микросхем К561ЛА7 при пониженном напряжении питания.

Оказалось, что схема прибора, собранная на этих ИМС, начинает работать уже при Un=2,5 В, что вполне приемлемо при питании от батареек (есть запас по питанию при разряде батареи). Из-за низкой нагрузочной способности элементов КМОП на выходе генератора в качестве буферного усилителя пришлось включить пару дополнительных ИМС, однако, на по мнению автора, это не сильно усложнило схему.

Достоинством схемы является низкое напряжение питания и малый потребляемый ток. Двух батареек питания хватит на много месяцев работы. А вместо кварцевого генератора можно собрать и использовать обычный RC-генератор, например, по схеме, показанной на рис.7.

shema ra200608 12

Рис. 5. Внешний вид прибора.

shema ra200608 13

Рис. 6. расположение деталей внутри корпуса.

shema ra200608 14

Рис. 7. Схема RC-генератора.

Источник

Поделиться с друзьями
admin
Здоровая спина
Adblock
detector