Термостат для холодильника своими руками схема

Содержание

Самодельный термостат холодильника. Часть 2

Продолжаем обзор схемы самодельного термостата для холодильника. В предыдущей статье была рассмотрена упрощенная схема термостата. Сейчас разберем второй ее вариант.

После проверки электросхемы на макетной плате, чувствовалась неудовлетворенность тем, что приходится применить целый корпус микросхемы ради использования одного инвертора. Конечно, возможно было заменить инвертор на транзистор, но хотелось обойтись двумя корпусами. Поэтому была применена электросхема, показанная на рис. 1.31.

Второй вариант самодельного термостата

В ней исключен инвертор, а управление ключами для RC-цепи паузы производится с выхода 14 разряда делителя DD1. Временные диаграммы работы двух соседних разрядов счетчика показаны на рис. 1.32а. Если делимая частота не изменяется, то интервалы срока tl, t2, t3, t4 одинаковы и равны половине периода импульсов младшего разряда счетчика.

При включении по предложенной схеме временная диаграмма будет примерно выглядеть, как на рис. 1.32б.

samodelnyj termostat xolodilnika chast 2 2

При появлении единицы на выходе 14 разряда счетчика (состояние 01) RC-генератор работает с включенными времязадающими элементами паузы — Rl, RЗ, Сl. Следующее состояние счетчика 10. Единица на выходе 15 разряда вкл времязадающие элементы работы — R2, С2 и в параллель R2 подключаются резисторы Rl, RЗ, R4.

Генератор работает с иной частотой и поэтому период срока tl не равен интервалу срока t2. При состоянии счетчика 11 — в параллель включаются времязадающие элементы и паузы и работы.

Причем, если при параллельном включении емкости Сl, С2 суммируются, то значения резисторов вычисляются по известной формуле и всегда будут меньше меньшего значения из-за в параллель включенных (при указанных на схеме номиналах разность между максимальным и минимальным влиянием на величина электроцепи работы составит 1 кОм).

samodelnyj termostat xolodilnika chast 2 3

Период срока t3 будет отличаться от интервала t2, но их сумма составит срок работы холодильника. Состояние 00 интересно тем, что значения емкостей С l, С2 не только суммируются между собой, но и с малыми величинами емкостей переходов открытых ключей в последовательном включении. То есть, суммарная емкость времязадающей электроцепи будет очень маленькой.

Даже с включенным в RC-цепь большим сопротивлением Rl + RЗ+ R4 частота генератора будет большой, а период срока t4 составит доли секунды (максимально — 0,8 с, минимально — 0,2 с). Момент t4 прибавляется к интервалу tl и составляет период паузы. Интервал работы, при указанных на схеме номиналах, равно 20…23 мин. момент паузы изменяется от 3 до 30 мин. Практически определено, что любой режим холодильника возможно задавать изменением только длительности паузы.

Если вам необходимы другие интервалы периода работы и паузы, то надо руководствоваться простым правилом. Для уменьшения влияния времязадающих цепей на расчетную частоту при их совместном включении следует в RC-цепи, подключенной к старшему разряду счетчика (вывод 5 микросхемы DD1), увеличивать номинал емкости. А в RС-цепи, подключенной к младшему разряду счетчика (вывод 4) — увеличивать номиналы резисторов.

Единица с выхода 15 разряда счетчика сквозь сопротивление R5 и ключ на транзисторе VT1 вкл промежуточное электрореле Kl. Промежуточное электрореле выбрано для того, чтобы уменьшить габариты блока питания. Для быстрого выхода холодильника на режим после размораживания, в разрыв базы транзистора возможно поставить тумблер. Один контакт тумблера пойдет на плюс питания, а второй на контакт 5 микросхемы DD1. Приблизительно через час непрерывной работы, холодильник наберет температуру и тумблер возможно переключить на режим регулирования температуры.

samodelnyj termostat xolodilnika chast 2 4

Примечание: в качестве альтернативного варианта можно применить ранее описываемый терморегулятор.

Детали самодельного термостата холодильника

Конденсаторы: Cl — КМ5Б, С2 — К7317. Микросхему К561КТЗ возможно заменить без изменения печатной платы на К176КТ1. Электрореле Кl и емкость фильтра С3 расположены совместно с блоком питания.

Источник

Простой терморегулятор на регулируемом стабилитроне TL431

Автор: admin Vladimir | Опубликовано 23-03-2015

samodelnyj na upravljaemom stabilitrone TL431

Привет всем любителям электронных самоделок. Недавно я по быстрому смастерил электронный терморегулятор своими руками, схема устройства очень проста. В качестве исполнительного устройства используется электромагнитное реле с мощными контактами, которые могут выдержать ток до 30 ампер. Поэтому рассматриваемая самоделка может использоваться для разных бытовых нужд.

По нижеприведенной схеме, терморегулятор можно использовать, например, для аквариума или для хранения овощей. Кому то он может пригодиться при использовании совместно с электрическим котлом, а кто-то его может приспособить и для холодильника.

Электронный терморегулятор своими руками, схема устройства

termoreguljator na TL431 16

Как я уже говорил, схема очень проста, содержит минимум недорогих и распространённых радиодеталей. Обычно терморегуляторы строятся на микросхеме компараторе. Из-за этого устройство усложняется. Данная самоделка построена на регулируемом стабилитроне TL431:

termoreguljator na TL431 17

Теперь поговорим подробнее о тех деталях, которые я использовал.

Детали устройства:

Как сделать терморегулятор своими руками

В качестве корпуса был использован сгоревший электронный счётчик Гранит-1. Плата, на которой расположились все основные радиодетали также от счетчика. Внутри корпуса поместились трансформатор блока питания и электромагнитное реле:

termoreguljator na TL431 5

termoreguljator na TL431 4

В качестве реле я решил использовать автомобильное, которое можно приобрести в любом автомагазине. Рабочий ток катушки приблизительно 100 миллиампер:

termoreguljator na TL431 14

termoreguljator na TL431 15

Так как регулируемый стабилитрон маломощный, его максимальный ток не превышает 100 миллиампер, непосредственно включить реле в цепь стабилитрона не получится. Поэтому пришлось использовать более мощный транзистор КТ814. Конечно, схему можно упростить, если применить реле, у которого ток через катушку будет меньше 100 миллиампер, например SRD-12VDC-SL-C или SRA-12VDC-AL. Такие реле можно включить непосредственно в цепь катода стабилитрона.

Немного расскажу о трансформаторе. В качестве, которого я решил использовать нестандартный. У меня завалялась катушка напряжения от старого индукционного счетчика электрической энергии:

termoreguljator na TL431 13

Как видно на фотографии там имеется свободное место для вторичной обмотки, я решил попробовать намотать её и посмотреть что получится. Конечно площадь поперечного сечение сердечника у него маленькая, соответственно и мощность небольшая. Но для данного регулятора температуры этого трансформатора достаточно. По расчётам у меня получилось 45 витков на 1 вольт. Для получения 12 вольт на выходе нужно намотать 540 витков. Чтобы уместить их я использовал провод диаметром 0,4 миллиметра. Конечно, можно использовать готовый блок питания с выходным напряжением 12 вольт или адаптер.

Как вы заметили, в схеме стоит стабилизатор 7805 со стабилизированным выходным напряжением 5 вольт, который питает управляющий вывод стабилитрона. Благодаря этому регулятор температуры получился со стабильными характеристиками, которые не будут изменяться от изменения питающего напряжения.

В качестве датчика я использовал терморезистор, у которого при комнатной температуре сопротивление 50 Ком. При нагревании сопротивление данного резистора уменьшается:

termoreguljator na TL431

Чтобы защитить его от механических воздействий я применил термоусаживающие трубочки:

termoreguljator na TL431 9

termoreguljator na TL431 10

Место для переменного резистора R1 нашлось с правой стороны терморегулятора. Так как ось резистора очень короткая пришлось напаять на неё флажок, за который удобно поворачивать. С левой стороны я поместил тумблер ручного управления. При помощи него легко проконтролировать рабочее состояние устройства, при этом, не изменяя выставленную температуру:

termoreguljator na TL431 3

termoreguljator na TL431 12

Несмотря на то, что клемник бывшего электросчетчика очень громоздкий, убирать его из корпуса я не стал. В него чётко входит вилка, от какого либо прибора, например электрообогревателя. Убрав перемычку (на фотографии желтая справа) и включив вместо перемычки амперметр можно померить силу тока, отдаваемую в нагрузку:

termoreguljator na TL431 7

Теперь осталось проградуировать терморегулятор. Для этого нам понадобится цифровой термометр ТМ-902С. Нужно оба датчика устройства соединить вместе при помощи изоленты:

termoreguljator na TL431 2

Термометром произвести замер температуры различных предметов горячих, холодных. При помощи маркера нанести шкалу и разметку на терморегуляторе, момент включения реле. У меня получилось от 8 до 60 градусов Цельсия. Если кому-то нужно сдвинуть рабочую температуру в ту или иную сторону, это легко сделать, изменив номиналы резисторов R1, R2, R3:

termoreguljator na TL431 11

Вот мы и сделали электронный терморегулятор своими руками. Внешне выглядит вот так:

termoreguljator na TL431 8

Чтобы не было видно внутренности устройства, через прозрачную крышку, я ее закрыл скотчем, оставив отверстие под светодиод HL1. Некоторые радиолюбители, кто решил повторить эту схему, жалуются на то, что реле включается, не очень чётко, как бы дребезжит. Я ничего этого не заметил, реле включается и отключается очень чётко. Даже при небольшом изменении температуры, никакого дребезга не происходит. Если все-таки он возникнет нужно подобрать более точно конденсатор C3 и резистор R5 в цепи базы транзистора КТ814.

Собранный терморегулятор по данной схеме включает нагрузку при понижении температуры. Если кому то наоборот понадобится включать нагрузку при повышении температуры, то нужно поменять местами датчик R2 с резисторами R1, R3.

Источник

Простой терморегулятор своими руками

Огромное количество электрических приборов, используемых в быту и промышленности, основывают свою работу на определении уровня температуры окружающей среды. Измерительный элемент в них представляет собой датчик температуры, срабатывающий при нагревании или охлаждении до установленного уровня. Их можно приобрести в большинстве магазинов, ими комплектуются духовки, контроллеры и прочие устройства, но гораздо интереснее изготовить терморегулятор своими руками.

prostoj termoregulyator 1Пример простого терморегулятора

Далее мы рассмотрим принцип действия и варианты изготовления такой самоделки.

Немного теории

Любой терморегулятор конструктивно включает в себя три основных блока:

Теоретически температурный датчик можно представить набором из четырех сопротивлений, среди которых три резистора будут представлены элементами с постоянными электрическими параметрами, а четвертый переменным. Они собираются в схему измерительного полуплеча, приведенную на рисунке 1 ниже:

datchik iz poluplecha rezistorov Рис. 1. Датчик из полуплеча резисторов

На схеме показан принцип соединения резисторов для получения температурного датчика. Как видите, сопротивление R2 является переменным и меняет физическую величину в соответствии с изменениями температуры окружающей среды. При подаче одного и того напряжения питания в терморегуляторе, при изменении сопротивления в плече будет возрастать ток в цепи.

На основании изменений происходит анализ температурных колебаний в результате которого рабочий орган вызывает срабатывание терморегулятора и последующее отключение или включение оборудования.

Для измерения сопротивления резисторов в качестве логического элемента устанавливается микросхема, работающая в режиме компаратора. Ее задача сравнить электрические сигналы в двух плечах. Пример схемы регулятора температуры приведен на рисунке:

principialnaya shema termoregulyatoraРис. 2. Принципиальная схема терморегулятора

Здесь блок микросхемы U1A принимает сигналы от измерителя температуры на входы 2 и 3. При достижении температуры срабатывания, в плечах начнет протекать разный ток, и компаратор выдаст на управляющий элемент электронного терморегулятора сигнал о включении.

При остывании датчика термометра ток в плечах терморегулятора уравняется, и электронный блок выдаст управляющий сигнал на отключение. Приведенная электронная схема работает в двух устойчивых состояниях – отключенном и включенном, чередование рабочих режимов происходит в соответствии с заданной логикой.

Эта схема терморегулятора используется в работе куллера персонального компьютера, получая электроснабжение от блока питания, происходит сравнение тока в плечах. Когда блок питания перегреется, терморегулятор переведет транзистор в противоположное состояние и вентилятор запустится.

Такой принцип может применяться не только в вентиляторах, но и в ряде других устройств:

Сфера применения терморегулятора ничем не ограничена, везде, где вы хотите получить контроль уровня температуры в автоматическом режиме с управлением питания, такое устройство станет отличным помощником.

Обзор схем

В зависимости от типа элементов, входящих в состав терморегулятора, различают механические и цифровые терморегуляторы. Работа первых основана на срабатывании реле, вторые имеют электронный блок, управляющий процессами. Примеры работы нескольких схем рассмотрим далее.

shema termoregulyatora n1 Рис. 3. Схема терморегулятора №1

На приведенной схеме измерение происходит за счет резисторов R1 и R2, при температурных колебаниях переменный резистор R2 изменит величину падения напряжения. После чего через усилитель терморегулятора, представленный парой транзисторов, начнется протекание электротока через катушку реле K1.

Когда величина тока в соленоиде создаст магнитный поток достаточной силы, сердечник притянется и переключит контакты в другое положение. Недостатком такого терморегулятора является наличие магнитопроводящих частей, которые из-за гистерезиса вносят дополнительную поправку на температуру помимо измерительного органа.

shema termoregulyatora n2Рис. 4. Схема терморегулятора №2

Данный терморегулятор, в отличии от механического термостата, не использует подключение реле, поэтому является более точным. Его применение оправдано в тех ситуациях, когда несколько градусов могут сыграть весомую роль, к примеру, при контроле температуры нагрева двигателя или в инкубаторе.

Здесь изменение температурного режима фиксируется резистором R5, благодаря которому терморегулятор изменяет электрические параметры работы. Для сравнения и усиления разницы поступающего с полуплеч электрического параметра применяется микросхема К140УД7.

Для контроля нагрузки в схеме устанавливается тиристор VS1, в данном примере терморегулятора ограничение составляет 150Вт, но при желании может подбираться и другой параметр. Но следует учитывать, что эксплуатация тиристора в качестве ключа приводит к его нагреванию, поэтому с увеличением мощности необходимо установить радиатор для лучшей теплоотдачи.

Создаем простой терморегулятор

При ремонте бытовой электротехники вы могли сталкиваться с ситуацией, когда со строя выходил терморегулятор. Хоть это и небольшая микросхема, устанавливаемая для контроля величины нагрева или охлаждения чего-либо.

Увы, стоимость такого элемента заводского изготовления довольно высока, поэтому куда выгоднее собрать терморегулятор самому. Схема достаточно простого самодельного терморегулятора приведена на рисунке ниже.

shema prostejshego termoregulyatoraРис. 5. Схема простейшего терморегулятора

Для его изготовления вам понадобится:

Процесс изготовления состоит из таких этапов:

В данном случае клеммник взят со старого прибора, располагавшегося в корпусе.

После сборки терморегулятора его можно установить в любое место, к примеру, для обогрева и подключить в цепь питания электрического котла. В случае, когда радиаторы отопления нагреют помещение до установленной температуры, контакты реле разорвут цепь и прекратят электроснабжение. При остывании цифрового термометра, снова произойдет включение отопления и снова пойдет нагрев. Если вас не устраивает температурный режим, его можно изменить настройкой датчика.

Видео по теме


Источник

Простой электронный термостат для холодильника на LM35. Схема и описание

Данный электронный термостат для холодильника поможет в тех случаях, когда собственный (заводской) термостат неисправен или его точность работы уже недостаточна. В старых холодильниках используется механический термостат температуры с использованием жидкости или газа, которыми заполнен капилляр.

При изменении температуры меняется и давление внутри капилляра, которое передается на мембрану (сильфона). В результате термостат включает и выключает компрессор холодильника. Конечно же, подобная система термостатирования имеет низкую точность, и детали ее со временем изнашиваются.

Описание работы термостата для холодильника

Как известно температура хранения пищевых продуктов в холодильной камере должна быть +2…8 градусов Цельсия. Рабочая температура холодильника +5 градусов.

122 image

Электронный терморегулятор для холодильника характеризуется двумя параметрами: температура запуска и остановки (либо средняя температура плюс значение гистерезиса) компрессора. Гистерезис необходим для предотвращения слишком частого включения компрессора холодильника.

В данной схеме предусмотрен гистерезис в 2 градуса при средней температуре в 5 градусов. Таким образом, компрессор холодильника включается, когда температура достигнет + 6 градусов и отключается при снижении ее до + 4 градусов.

prostoj elektronnyj termostat dlya xolodilnika na lm35

Этот температурный интервал достаточный для поддержания оптимальной температуры хранения продуктов, и при этом он обеспечивает комфортную работу компрессора, предотвращая его чрезмерный износ. Это особенно важно для уже старых холодильников, использующих термореле для запуска двигателя.

12 image

85 image

86 image

Электронный термостат является подходящей заменой оригинального термостата. Терморегулятор считывает температуру с помощью датчика, сопротивление которого меняется в зависимости от изменения температуры. Для этих целей довольно часто используют термистор (NTC), но проблема заключается в его низкой точности и необходимости в калибровке.

Для обеспечения точной установки контролируемой температуры и избавления от многочасовой калибровки, в данном варианте термостата для холодильника был выбран датчик температуры LM35. Он представляет собой интегральную схему, линейно откалиброванную в градусах Цельсия, с коэффициентом 10 мВ на 1 градус Цельсия. В связи с тем, что пороговая температура близка к нулю, относительное изменение выходного напряжения велико. Поэтому сигнал с выхода датчика можно контролировать с помощью простой схемы состоящей всего из двух транзисторов.

Так как выходное напряжение слишком мало, чтобы открыть транзистор VT1, датчик LM35 включен как источник тока. Его выход нагружен резистором R1 и поэтому сила тока на нем изменяется пропорционально температуре. Этот ток влечет падение на резисторе R2. Падение напряжения управляет работой транзистора VT1. Если падение напряжения превышает пороговое напряжение перехода база-эмиттер, транзисторы VT1 и VT2 открываются, реле К1 включается, чьи контакты подключены вместо контактов старого термостата.

Резистор R3 создает положительно обратную связь. Это добавляет небольшой ток к сопротивлению R2, который сдвигает порог и тем самым обеспечивает гистерезис. Обмотка электромагнитного реле должна быть рассчитана на 5…6 вольт. Контактная пара реле должна выдерживать необходимый ток и напряжение.

Датчик LM35 расположен внутри холодильника в подходящем месте. Сопротивление R1 припаивается непосредственно к датчику температуры, что в свою очередь позволяет соединить LM35 с монтажной платой всего двумя проводами.

Провода соединяющие датчик могут внести в схему помехи, поэтому для подавления помех добавлен конденсатор С2. Схема работает от источника питания 5 вольт построенного на стабилизаторе 78L05. Потребление тока главным образом зависит от типа используемого реле. Блок питания должен быть надежно изолированы от сети.

Большим преимуществом этой схемы является то, что она начинает работать сразу при первом запуске и не нуждается в калибровке и настройке. Если возникнет необходимость немного изменить уровень температуры, то это можно сделать путем подбора сопротивлений R1 или R2. Сопротивление R3 определяет величину гистерезиса.

Источник

Терморегулятор для холодильника на микроконтроллере ATMEGA8 и термодатчике DS18B20. Схема, плата, прошивка

1487262418 1

Содержание / Contents

↑ Немного истории

Моему холодильнику уже добрых 20 лет и за это время он успел сменить в себе два мотора и один термостат, побывал в двух мастерских и теперь это «чудовище Франкенштейна» совсем перестало выключаться.
По опыту скажу, что я очень не люблю такие термостаты, их механическая начинка довольно капризная. А ещё мастера мне попадались уникальные, они чинили одну часть холодильника, и ломали другую. Например, после ремонта у меня перестала включаться лампочка «в салоне» при открывании двери.
«Хочешь, чтобы было сделано хорошо? Сделай это сам!»

↑ Изучение холодильного вопроса и временное решение

Еда начинает портиться! Звать мастера, чтобы он провозился с холодильником пару недель (а у меня в городе такие мастера и есть) — не вариант, что делать? Надо периодически выдёргивать вилку из розетки, имитируя работу термостата! Меня хватило на один день этого мазохизма, поэтому мне нужно удобное решение и собрал я за вечер обычный микроконтроллерный таймер-реле включения/выключения буквально на подносе и это не шутка.

Работает! Его задача — тупо включать компрессор на 15 минут и выключать на 45. Питание взял от импульсника из сломанного DVD плеера, в нём удачно обнаружились два выхода 12 и 5 Вольт. Реле врезал в удлинитель и прижал всё колонками. Изящное временное решение вышло!

↑ Схема моего терморегулятора

Теперь есть «время на подумать» и поискать вдохновения в Интернете для разработки полноценного терморегулятора.
Что в итоге я выяснил:
• компрессор может работать часами, но не сутками, ему нужен отдых;
• после выключения компрессора, нужно минимум 5-10 минут перед повторным запуском.

В остальном, есть простор для творчества.

Тут всё просто. Есть реле RL1 на ток в 16А на каждую группу, управляющую компрессором. Ключ Q1 управляет этим реле, получая команды от микроконтроллера U1. МК тактируется от кварца в 4 МГц.

Кнопки управления всего две, это «PLUS» и «MINUS», подтянуты они к плюсу питания и зашунтированы ёмкостями С4 и С5, для избавления от дребезга контактов.

Используется цифровой термодатчик U1 ds18b20, работающий по однопроводному протоколу.

Вся индикация — на семисегментном LED индикаторе с общим анодом, работающим в динамическом режиме. Светодиод «WORK» это индикатор состояния компрессора, который показывает, включен он или нет.

Питание взял от готового импульсника, на выходе которого, снимается 12В на реле и 5В на всё остальное.

Осталось ознакомиться со схемой холодильника и приступить к разработке логики управления компрессором.

В итоге, клеммы с термостата SK будут отключены и перенаправлены на контакты моего реле.

↑ Пишем холодильную программу для МК

Тут не указана процедура опроса кнопки, т.к. она происходит постоянно на всех этапах работы программы. Во время периодического опроса датчика, а это каждые 3 секунды, происходит проверка исправности датчика температуры. В случае потери связи с датчиком, программа перейдёт в аварийный режим, когда вызывается подпрограмма таймера работы/отдыха компрессора. Для возврата в нормальный режим, необходимо будет исправить связь с датчиком температуры и выключить/включить устройство.

Данная подпрограмма является копией той, что работала на подносе в начале статьи, так что предыдущие труды прошли не зря.

Прошивка и исходники, как всегда, в подвале статьи! Что касается фьюзов, то они все сняты, кроме CKSEL1, т.е. микроконтроллер настроен на работу от внешнего кварца на 4 МГц.

↑ Индикация и настройки

Теперь поговорим об индикации. В устройстве заложены несколько параметров, которые можно настраивать:
1) температуру внутри — «t» (от 0 до 10 градусов, шаг 0,1 градус);
2) гистерезис заданной температуры — «G» (от 1,0 до 5,0 градусов, шаг 0,1 градус);
3) таймер отдыха компрессора — «h» (от 5 до 60 минут, шаг 1 минута);
4) таймер работы компрессора — «H» (от 10 до 600 минут, шаг 10 минут);
5) время работы компрессора в аварийном режиме — «on» (от 5 до 99 минут, шаг 1 минута);
6) время отдыха компрессора в аварийном режиме — «oF» (от 5 до 99 минут, шаг 1 минута).

Далее фотографии с реальными настройками.

Настройка температуры производится простым нажатием кнопок «PLUS» и «MINUS», при этом первоначальное нажатие покажет текущую заданную температуру, а повторное нажатие одной из двух кнопок, уже изменит её на 0,1 градус.

Если не трогать кнопки 2 секунды, настройки сохраняются и устройство покажет текущую температуру в камере холодильника.

Для проведения настроек других параметров, нужно нажать сразу две «PLUS» + «MINUS» кнопки и отпустить, а затем изменять значения необходимых параметров теми же кнопками «PLUS» и «MINUS».

Переход на следующий параметр в меню, происходит также нажатием сразу двух кнопок «PLUS» + «MINUS».

Если не трогать кнопки 2 секунды, все настройки сохраняются и индикация возвращается на показ температуры в камере холодильника.

Порядок переключаемых с помощью двух кнопок параметров соответствует порядку пунктов (2 → 3 → 4 → 5 → 6), перечисленному выше.
Применение параметров в программе в реальном времени происходит только в пунктах 1, 2, 5, 6. Параметры пунктов 3 и 4 применяются после событий старта/остановки компрессора.

При подаче питания на устройство на индикаторе высветится оставшиеся время отдыха компрессора. Это подстраховка. Мало ли, вдруг было отключение электричества, и компрессор до этого события работал, его же нельзя вот так сразу запускать. Нужна пауза минимум 5-10 минут, чтобы давление внутри стравилось, иначе пусковой ток будет слишком велик, и это может повредить мотор. В моём случае, он просто не запускался и гудел на пусковой обмотке, потребляя более 2 кВт!

По истечении таймера защиты индикация переключается на постоянное отображение температуры.

Гистерезис необходим для образования температурного «окна», т.е. если установлена температура +5°, а гистерезис равен 2°, то компрессор будет включаться при +7° и выключаться при +3°.

↑ Конструкция и детали цифрового термостата

1487262612 15
1487262671 16
1487262656 17
1487262683 18

1487262660 19

В крышке холодильника была установлена новая заглушка, в месте, где должен быть световой индикатор в более дорогих моделях холодильников данной серии. Вот как раз и используем заготовленное заводом пространство.

Выпилил окошки и отверстия в заглушке. Хорошо, что у меня завалялся кусок лицевой затемняющей панели от спутникового тюнера!

1487262676 20
1487262696 21

Все эти кусочки пластика я посадил на термоклей. В итоге вышла довольно симпатичная лицевая панель.

1487262718 22

Проводку от платы подключил к контактным клеммам возле компрессора, в соответствии со схемой холодильника. На фотографии видно, что моему холодильнику реально пора на пенсию, но речь не об этом.

Далее прикрутил платы на платформу от крышки.

1487262708 23

1487262733 24

Погонял систему в таком опасном открытом виде пару дней, дабы убедиться, что всё работает. После сделал гидроизоляцию платы управления, залив плату термоклеем в области микроконтроллера и надел крышку.

1487262724 25
1487262759 26

↑ Результаты проделанной работы

На мой взгляд, выглядит всё круто и аккуратно. Мама очень довольна изобретением и боится нажимать на кнопки, что бы без привычки ничего не сломать.

Выставил температуру в +4,5° и гистерезис в 1,5°. Итого вышло, что холодильник включается при +6° и выключается при +3°. По времени вышло, что компрессор работает 10 минут и отдыхает 55 минут, а это 0,15 рабочего времени. В Интернете сказано, что диапазон соотношение цикла работы/отдыха в 0,2-0,9 считается нормальным. Думаю, моя цифра показывает, что экономия электроэнергии находится на высоком уровне.

Это был интересный опыт в решении данной проблемы, которая возникает у многих владельцев старых холодильников.

↑ Файлы

▼ Файловый сервис недоступен. Зарегистрируйтесь или авторизуйтесь на сайте.

▼ Файловый сервис недоступен. Зарегистрируйтесь или авторизуйтесь на сайте.

▼ Файловый сервис недоступен. Зарегистрируйтесь или авторизуйтесь на сайте.

▼ Файловый сервис недоступен. Зарегистрируйтесь или авторизуйтесь на сайте.

▼ Файловый сервис недоступен. Зарегистрируйтесь или авторизуйтесь на сайте.

▼ Файловый сервис недоступен. Зарегистрируйтесь или авторизуйтесь на сайте.

На этом всё. Благодарю за внимание!
И да прибудут с вами интересные статьи на Датагоре!

Камрад, рассмотри датагорские рекомендации

🌻 Купон до 1000₽ для новичка на Aliexpress

Никогда не затаривался у китайцев? Пришло время начать!
Камрад, регистрируйся на Али по нашей ссылке. Ты получишь скидочный купон на первый заказ. Не тяни, условия акции меняются.

🌼 Полезные и проверенные железяки, можно брать

Куплено и опробовано читателями или в лаборатории редакции.

Источник

Поделиться с друзьями
admin
Здоровая спина
Adblock
detector