Термосмесительный узел своими руками

Содержание

Сообщества › Сделай Сам › Блог › Смесительный узел для ТП своими руками

c17eca6s 100

Хочу сделать смесительный узел для теплого пола на основе Трехходового термостатического смесительного клапана VT.MR01.N

Накидал примерно такую конструкцию

c3d7b19s 960

53d7b19s 960

С удовольствием выслушаю советы

Метки: смесительный узел, теплый пол, своими руками

Комментарии 100

GgAAAgIjuOA 60

Не хочу показаться чайником но у меня цены ужасные, я просто сэтим не когда не сталкивался, у меня дом большой и хотел первый этаж в тёплый пол, подсказали что так будет теплей, но цены растут с каждым днём и незнаю смогу я их осилить, Вы человек знающий и примерно вкурсе сколько обойдёться 100квд в рублях

c17eca6s 60

Завтра гляну смету скажу точнее

GgAAAgIjuOA 60

Прошу прощение, хотел задать вопрос я хочу тоже тёплый пол в доме кадр 100 за место вады тосол, не подскажете сколько будет стоить примерно всё

c17eca6s 60

500-600 метров трубы, подложка, стяжка если 50 мм, то 5м3, коллектор, смесительный узел, насос, тосол, ну а дальше какие у вас цены, мой узел в половину дешевле покупного

ZyAAAgOtsuA 60

Схема рабочая.
Группа воздухоудаления и слива ставится в конце коллектора.
Лучше брать коллектор с расходомерами, на них можно точно отрегулировать расход теплоносителя, он должен быть по каждому контуру не менее 2 л в минуту. Трехходовые клапаны нажимного действия не всегда отвечают заявленному kvs. До 60 кв м ТП этот трехходовой потянет.
Если установка в квартире от стяка, рекомендую на обратной линии поставить тройник с реле сухого хода для выключения насоса (вдруг внезапно стояк скинут, так хоть насос не сгорит).

c17eca6s 60

установка в дом планируется

ZyAAAgOtsuA 60

сколько квадратов ТП?

c17eca6s 60

ZyAAAgOtsuA 60

Этот клапан не пойдет. 100%.

c17eca6s 60

у меня у товарища точно на таком же клапане в гараже 150 м2 теплого пола, вроде работает

Источник

Необходимость смесительных узлов в системе теплого пола

При устройстве водяного отопления с использованием радиаторов или другого высокотемпературного оборудования, теплоноситель может на них подаваться практически любой температуры, которую способен выдать котел. Но ситуация с тёплыми полами кардинально отличается. По строительным нормам и здравому смыслу существует ограничение максимальной температуры поверхности пола. Превышение которой делает эксплуатацию системы не комфортной и даже опасной.

Например, по СНиП «Отопление, вентиляция и кондиционирование воздуха» максимальная температура пола, в котором используется система встроенного подогрева не может превышать:

Эти ограничения затрудняют использование котла без смесительного узла для теплого пола. Так как без него теплоноситель неизбежно будет поднимать температуру теплого пола выше граничного значения. А температура теплоносителя может достигать уровня выше 80 °C.

Смесительный узел теплого пола в таком случае позволяет подавать в трубы теплоноситель оптимальной температуры. Принципиально ли его применение и можно ли выйти из положения без него?

Обязательность использования смесительных узлов

Как мы уже определились, основная цель смесительного узла – это поддерживать температуру воды в системе на требуемом уровне. Для этого берется часть воды от котла с повышенной температурой и смешивается с некоторым количеством воды из «обратки» до достижения требуемого уровня, который позволяет достичь оптимальной температуры пола.

Если исключить из схемы насосно-смесительный узел для теплого пола, то необходимо обеспечить поддержку температуры другим способом. Как вариант, возможно применение низкотемпературного котла, который способен обеспечивать температуру подаваемой воды в районе 35-38 °C, чтобы поддерживать требуемый нагрев пола. Чаще всего для этих целей рекомендуют электрокотлы. Также в таком режиме работают водяные тепловые насосы.

fdab86b59d7c7c50cf68fc1a9f16eeda

Схема теплого пола без смесительного узла.

Следует также иметь в виду, что теплый пол без смесительного узла практически невозможно использовать при комбинации напольного и радиаторного нагрева, так как для радиаторов температура должна быть достаточно высокой, чтобы обеспечивать оптимальную теплоотдачу. Если же теплый пол используется как основной источник, то при применении хорошего котла с подходящими характеристиками смесительный узел может не использоваться.

Итак, если необходимость смесительного узла не ставится под сомнение, как поступить в таком случае? Можно применить изделие заводского изготовления, которое рассчитано и протестировано для бесперебойной работы, но основным недостатком таких систем является их дороговизна.

Как вариант можно использовать самодельный смесительный узел для теплого пола. Основное его преимущество – существенно меньшая цена. В среднем, такой узел выходит в 3-4 раза дешевле, чем заводского изготовления, но возникают вопросы в его расчете и подборе элементов. Ведь при неправильном подборе теплый пол будет работать неравномерно или вообще его эксплуатация будет существенно затруднена.

c781d80df25b315ca3e1ed052632639c 74bdfbf278068dd36772e8aad0c58d46 1e7703c347ed2c770c277390a7cdfb1c 6b835f0013f13e2ea7899b2ef703070c 701a6057e0c010a1f771e3e7611de31b 1f0d46df4d0c058975795cbb7ebea53d 830fc6304d6121a5c327d0347fb0d6c4 d3ac2c9f07a0ee50233157aee373980d 81f00c6d1189a0f6d0bd19ead5e3f1df b556d1297f5099b73f2d9f3dfb02e466

Как создать своими руками смесительный узел? В общем, основные задачи при такой постановке вопроса сводятся к следующим пунктам:

Принципы монтажа ничем не отличаются от создания отопительной сети

Основное внимание нужно уделить расчету, выбору схемы и подбору оборудования. На чем и будем акцентировать внимание далее

Производительность смесительного узла и необходимый напор циркуляционного насоса

При подборе комплектующих для самостоятельной сборки насосно-смесительного узла необходимо, помимо соединительных диаметров труб и требуемых элементов, знать еще и некоторые эксплуатационные параметры. В частности, сам насос и любой термоклапан или смесительный вентиль должны отвечать требованиям по производительности. Говоря проще – это способность пропустить через себя требуемое количество теплоносителя в единицу времени. А для насоса важен еще и создаваемый напор, так как он должен обеспечить стабильную циркуляцию теплоносителя во всех подключенных к смесительному узлу контурах «теплого пола».

Обычно для сложных по структуре систем подобные расчеты проводят специалисты в области гидравлики и теплотехники. Однако, простые вычисления для собственноручно создаваемой системы «теплого пола», со вполне допустимым уровнем точности, можно провести и самостоятельно.

Производительность смесительного узла.

В вопросах производительности циркуляционный насос является «активным звеном». То есть именно он и должен обеспечить прокачку необходимого объема теплоносителя через контуры, который отдаст часть накопленной энергии на обогрев помещения. Термостатический же элемент смесительного узла долже быть в состоянии пропустить такой объем через себя. Клапаны могут выпускаться с различной пропускной способностью, а некоторые из них, кроме того, имеют возможность предустановки на определенную производительность в единицу времени.

Понятно, что чем больше площадь отапливаемых помещений, и чем выше требования с системе «теплого пола» (будет ли она основным источником тепла или планируется только повышение общей комфортности в помещениях), тем больше тепловой энергии необходимо доставить для теплообмена. А так как разница температур на подающем и обратном коллекторе обычно выдерживается постоянная, то несложно вычислить и объем воды, необходимый для переноса требуемого количества тепла.

Не станем утомлять читателя сложными формулами, а лучше предложим воспользоваться встроенным калькуляторов, который сделает расчёт максимально простым занятием.

В качестве исходных данных будет выступать площадь помещений, в которых создается система «теплый пол». Причем, есть определенное дифференцирование, в зависимости от того, будет ли такой подогрев основным, либо же будет рассматриваться только как средство повышения комфорта в жилых помещениях. Для ванной, туалета, прихожей или кухни мощность пола лучше рассматривать с точки зрения основного отопления.

36f0aa99911d5d54daeb5c4ebc87880e 1df6305bd89823c9f3a0e582edc89d5f f0c940f655da18e00cc2bb28dfbba9a7 15cf2c9933593b5569f716672878ebfa 3a3a75e9c8e34994bbcc12188c44188c 0600605fb34992197f31c8c925368371 72a0908bc0173ec57b27ccf660824eb7 76ccaff1ef7d6f712b74705f8724a705 6f5d7088cae7e962115ff1e41ed5a2f4 03e6a7b614925828252f2ead40660815

Далее, будет предложено вести планируемые температуры на подающем и обратном коллекторах. В правильно смонтированной и отрегулированной системе разница обычно около 5, максимум – 8÷10 градусов.

Создаваемый насосом смесительного узла напор

Циркуляционному насосу смесительного узла «надеяться не на кого» – он должен обеспечить работу всех контуров отопления, без вероятности их запирания из-за недостаточности давления в системе. Это особо актуально в тех случаях, когда термостатический элемент полностью перекрывает подачу горячего теплоносителя, и приток извне приостанавливается – циркуляция при этом страдать не должна.

Здесь уже на первый план выйдут показатели гидравлического сопротивления труб, на которые накладываются еще и немалые потери напора на запорно-регулирующей арматуре узла, которой он обычно весьма насыщен.

Понятно, что насос будет создавать на подающем коллекторе равное значение давления для всех контуров. Этот параметр в ходе регулировки системы будет настраиваться для каждого контура отдельно с помощью специальных балансировочных устройств. Значит, расчет необходимо провести для наиболее протяженного контура, в котором показатели гидравлического сопротивления будут максимальными.

Ниже расположен калькулятор, который позволит быстро определиться с минимально необходимым значением напора. В программу расчета уже внесены нужные поправки на гидравлические потери напора в запорно-смесительных элементах узла.

Обустройство насосно-смесительного узла

Каждый производитель предлагает свои конструктивные решения смесителей для тёплых полов. Однако готовые узлы, особенно импортные, достаточно дорогие, тогда как собрать такое устройство можно самостоятельно из отдельных элементов. Как сделать такой бюджетный вариант, мы расскажем далее, взяв за основу вариант с трёхходовым клапаном.

Элементы для сборки

Приобретаете все компоненты, необходимые для сборки узла.

Что требуется для сборки смесительного узла

Основные детали для контура в помещении площадью 20 м кв.:

Коллектор теплого пола

Размеры соединительной арматуры подбираются в соответствии с мощностью системы и диаметра трубопровода.

Таблица. Пошаговая инструкция по сборке.

fa761f8b91342d91011313406061a67c 14528d26cc4679b4f97756ba7f60ba99 eb2919ff13ad848dd3de1680d661b6d9 e5895d1d6ee79a54e2e2d03f52626dc0 645a51df2af3c0dfbbc15ac46e0ff49e 7175da1f27f8d6f1cdb4f908ac37bd9d 9ec9d65868011012abaa606f522dd1f5 fafdf40b30f74f8f4e9aa31ad878acd9 563456f7a2f8e040ad25f6f17732de73 0bd344f0ddb8c174993b4e573522dc3c

Шаги, фото
Описание действий

На смесительном клапане есть стрелка, которая показывает направление движения теплоносителя. С той стороны, где она красная, должен быть вход трубы с горячей водой.

Снизу находится вход обратки.

Берёте переходную муфту, отделяете небольшую прядь льна и наматываете его на резьбу насухую. Форма намотки значения не имеет, попадать по шагу резьбы необязательно.

Затем выдавливаете поверх льна немного герметика и пальцем распределяете его по всей окружности резьбы. Старайтесь это делать аккуратно, чтобы герметик не попал внутрь муфты.

Прикручиваете переходник к смесительному клапану с той стороны, откуда будет выходить вода для контура пола.

Чтобы затянуть соединение, можно воспользоваться вставленными внутрь втулки пассатижами. Выдавленные при этом излишки герметика следует убрать салфеткой.

Аналогично с противоположной стороны (откуда будет заходить горячая вода) с помощью переходника с двухсторонней резьбой к смесительному тройнику присоединяется обратный клапан. Соединение хорошо затягиваете разводным ключом и снова протираете насухо.

После того как втулка будет хорошо затянута, прикручиваете сам клапан

Его очень важно правильно поставить. Ориентируйтесь по стрелочке на корпусе, которая показывает направление движения воды.

Обратный клапан будет стоять в нижней части смесителя – там, где в него будет заходить остывшая вода из обратного трубопровода.

К обратному клапану присоединяется тройник с вентилем, через который коллектор будет сообщаться со смесителем.

Сам смесительный узел уже собран

Теперь нужно присоединить к нему остальное. Сначала насос, предварительно установив на соединение резиновую прокладку.

Насос будет находиться слева, на выходе из смесителя.

Снизу к тройнику через угловой переходник присоединяется коллектор.

На выходное отверстие насоса навинчивается фитинг. В данном случае он полипропиленовый, но может быть и любой другой. Главное – качественно выполнить соединение.

Для того чтобы потом можно было закрепить узел на стене и обеспечить коллектору отступ для прохождения под ним трубы обратки, воспользуйтесь сантехническим хомутом. Обычно он крепится на шпильку, но в данном случае мастер отрезал 2 см от пропиленовой трубы, чтобы воспользоваться ею как подставкой.

Гайка хомута как раз идеально входит в отверстие трубки.

Устанавливаете хомуты. В данном случае их будет три: под коллектором обратки, под полипропиленовым фитингом слева от насоса и справа, под вентилем на входе горячей воды.

Когда вы покупаете узел в сборе от производителя, в комплекте есть специальный экран, на который он устанавливается. Так как мы собираем его сами, в качестве экрана можно использовать кусок листа OSB, вырезанного по нужному размеру. Поставьте на него собранный узел, подложите в нужных местах хомуты с подставками и обрисуйте их контуры, чтобы было видно, где выполнять крепления.

Теперь коллектор нужно снять и закрепить хомуты к панели.

Для этого в них по центру нужно просверлить тонкие отверстия, и саморезами прикрутить к плите.

Когда смесительный узел будет установлен на штатное место и зафиксированным хомутами, останется только присоединить к нему со стороны насоса коллектор тёплого пола.Примечание! В данном случае мастер собирает эту часть конструкции из полипропилена, но так как у вас наверняка нет для него специального паяльника, можно использовать соединительную арматуру из латуни.

Как выглядит собранный смесительный узел

В конечном итоге смесительный узел ручной сборки будет выглядеть так, как показано на фото, и мы очень надеемся, что у вас всё получилось.

Особенности установки

У установки смесителя есть свои нюансы, которые необходимо учитывать. Все правила стоит соблюдать для более полноценной и бесперебойной работы системы. Особенности:

Весь процесс самостоятельной установки должен проходить поэтапно, то есть все предварительные меры, в том числе и по обустройству места, должны быть выполнены. Большая часть дополнительных приспособлений обычно устанавливается только по желанию установщика.

Это относится и к изменению погодных условий, а также к различным стабилизаторам температурных режимов и давления. Кроме этого, сам процесс установки должен начинаться только после того как произведены расчеты. Например, на 150 квадратных метров будет достаточно одного двухходового клапана, если нет вторичных факторов.

Самостоятельно установить узел вполне возможно, но при этом требуется соблюдать все условия и требования к системе отопления. Кроме этого, необходимо помнить, что многие характеристики различных схем установки должны быть учтены заранее.

Выбор комплектации узла зависит от условий и требований, которые будут устанавливаться для полноценной работы. Установкой должен заниматься специалист или лицо с опытом, так как это позволит избежать большинства ошибок.

af68441528c81c39a67bfec405c86967 b99a06552ebb2525b0915cb26db56872 573b5dd2076da4b07950d5126040618c d7766101cd05c6dabf1fcf2951a39531 39231df19c65ee6e4faa0889645ab7f3 5c64f2c2c371a355879ef9985c833363 7a2f3829b959814871e4c5f85b14239f cfd09df35aef35f673e180f4f2615ee3 6bdc0d7d98f41844d09b458f78cd6ff9

Смесительный узел для теплого пола своими руками: назначение и устройство

Если кто-то вам скажет, что смесительный узел теплого пола – это всего лишь распределительный коллектор, который разделяет потоки теплоносителя на группы (так сказать, поставляет его в различные участки теплого пола), смело можете обвинять его в некомпетентности в данном вопросе. На самом деле то, о чем они говорят (распределительной гребенке или коллекторе), является всего-навсего только частью смесительного узла, включающего еще массу различного оборудования, которое служит не только для управления работой теплого пола, но и для оптимизации этой самой работы. В общем, система эта сложная, и с ее устройством следует разобраться подробнее – чем мы с вами и займемся дальше. И начнем с того самого коллектора, который большинство начинающих сантехников путают со смесительным узлом теплого пола.

Коллектор или распределительная гребенка – без нее само существование насосно-смесительного узла для теплого пола можно ставить под сомнение. Именно этот элемент узла в полной мере отвечает за равномерное распределение теплоносителя по всем отдельно взятым частям системы. В смесительном узле устанавливается два таких коллектора – один подающий, а второй собирающий, так что название «распределительная гребенка» в некотором роде не совсем правильное. Распределительная – это та, которая устанавливается на подаче теплоносителя к теплому полу, а собирающая – та, которая монтируется на обратном трубопроводе. Внешне и конструктивно они схожи друг с другом и представляют собой трубку большого диаметра, сбоку которой имеются резьбовые ответвления. Чтобы было более понятно, скажу так – скрученные воедино пять, шесть и более тройников одного типа и одного диаметра. Вот вам и первая наметка по поводу решения вопроса, как сделать смесительный узел для контура теплого пола?

По аналогии с ним на подаче, между гидрострелкой и распределительной гребенкой, устанавливается термореле – оно необходимо только в случае изготовления автоматического смесительного узла. Если говорить о ручном варианте управления, то от него можно отказаться полностью.

Вот так выглядит со стороны схема смесительного узла теплого пола – по крайней мере, ее профессиональный вариант. Если говорить об изготовлении такого узла своими руками, то, естественно, она может быть упрощена по максимуму. О том, как устроен и работает самодельный смесительный узел для теплого пола, мы и поговорим дальше.

Источник

Смесительный узел для теплого пола своими руками: схемы, инструкция по установке

Системы теплых полов, по которые еще мало кто слышал полтора десятка лет назад, прочно вошли в обиход современных домов и квартир, особенно у тех хозяев, кто думает о создании максимального комфорта проживания в своих владениях. В рекламных газетах – масса объявлений об услугах по монтажу систем прогрева пола, но таково уж «устройство» многих наших мужчин, что у них просто «руки чешутся» делать все собственными силами.

%D1%81%D0%BD%D1%831 Смесительный узел для теплого пола своими руками

Из разнообразия типов «теплых полов» его водяная разновидность относится к наиболее сложным и дорогим в установке, правда, считается, что она значительно экономичнее в плане последующих эксплуатационных расходов. Работа по монтажу сложна уже сама по себе, если ее рассматривать уже хотя бы только с точки зрения прокладки трубных контуров, прячущихся в толще пола. Но совершенно наивно будет полагать, что на этом основные заботы остаются позади, и необходимо всего лишь врезаться в трубы подачи и «обратки». Нет, предстоит еще создать практически с нуля своеобразную «систему управления» системой, так чтобы обогрев пола заработал и приносил в дом только комфорт, а не массу неприятностей. Главным элементом такой системы является насосно-смесительный узел, который напрямую отвечает за поддержание требуемой температуры в контурах и обеспечение циркуляции теплоносителя по ним.

Такие устройства можно приобрести в готовом виде. А есть ли возможность собрать смесительный узел для теплого пола своими руками? Да, это вполне посильная задача – этому и посвящена настоящая публикация.

В чем значимость насосно-смесительного узла в системе водяного «теплого пола»?

Чтобы любая работа шла успешно, исполнителю необходимо понимать, что он делает, и в чем принцип действия создаваемого им изделия. Не является исключением и наш случай: для начала следует полноценно представить, какие же функции возлагаются на насосно-смесительный узел – так будет проще разобраться в дальнейшем в его конструкции.

%D1%81%D0%BD%D1%832 Температурные режимы в «классической» системе отопления и в системе «теплого пола» — очень сильно отличаются

Итак, начнем с того, что температура циркулирующего по контурам тёплого пола теплоносителя значительно, практически вдвое, отличается от аналогичного показателя в традиционной системе отопления, где роль теплообменников выполняют радиаторы или конвекторы.

Так, в обычных высокотемпературных системах нагрев воды в трубах подачи обычно балансирует на уровне 70÷80 °С, а в ряде случаев может даже превышать эти границы. Именно под такие режимы эксплуатации создавались ранее и преимущественно создаются теперь тепловые магистрали, выпускается подавляющее большинство моделей котельного оборудования.

Но те температурные режимы, что считаются нормой для классических систем отопления, совершенно не приемлемы в условиях эксплуатации «тёплых полов». Это объясняется следующими обстоятельствами:

В последнее время в продаже появились модели котлов, которые вполне могут работать в режиме «теплого пола», то есть давать низкотемпературный нагрев. Но есть ли смысл приобретать новое оборудование, если есть возможность обойтись имеющимся? Кроме того, «тёплые полы» в «чистом» виде применяются не столь часто – обычно они в масштабах одного дома комбинируются с «классикой». Ставить два раздельных котла? — очень расточительно. Лучше несколько усовершенствовать свою систему, выделив из нее участок «тёплых полов», и на границе этого разделения как раз и установить тот самый насосно-смесительный узел, о котором будет вестись речь.

Есть и еще одно обстоятельство, объясняющее необходимость насосно-смесительного узла. Одно дело – обеспечить циркуляцию в основном контуре отопления, и другое – в проложенных контурах теплого пола, каждый их которых достигает в длину десятков метров, с многочисленными изгибами и поворотами, дающими значимый прирост гидравлического сопротивления. Значит, необходимо выделенное насосное оборудование, которое также, как правило, входит в схему этого узла, что, кстати, отражается и на его названии.

Принцип работы смесительного узла

Задача понятна – необходимо, не нарушая режима работы основной системы отопления, добиться того, чтобы в контурах «теплого пола» циркулировал теплоноситель с гораздо более низким уровнем нагрева. Как этого добиться?

Ответ напрашивается сам собой – качественным регулированием, то есть подмесом в горячий поток более холодного. Полная аналогия с тем, что мы проделывает неоднократно каждый день, настраивая температуру воды в душевой или в кухонном смесителе.

Цены на теплый пол

С горячим потоком – все понятно, а вот откуда взять охлажденный? Да из проходящей рядом трубы «обратки», по которой теплоноситель, отдавший тепло в приборах отопления или в контуре «тёплого пола», возвращается обратно в котельную. Изменяя пропорции подмеса горячей и охлажденной жидкости, можно добиться требуемой температуры.

Безусловно, по сложности устройства смесительный узел весьма существенно отличается от обычного бытового крана. Так и задачи перед ним стоят более ответственные!

Так, смесительный узел должен уметь работать без постоянного вмешательства человека – автоматически отслеживать уровни температуры и вносить оперативные изменения в процесс смешивания потоков, изменяя их количественно. Нередко возникает ситуация, когда в дополнительном поступлении тепла и вовсе нет необходимости, и оборудование должно просто «запереть» контур, обеспечивая только внутреннюю циркуляцию теплоносителя по нему, до требуемого остывания.

Складывается впечатление, что все это очень мудрено для неспециалиста. Действительно, если посмотреть на насосно-смесительные узлы заводского производства, предлагаемые в продаже, то, на первый взгляд, разобраться в хитросплетении труб, кранов, клапанов и т.п. – очень непросто. А стоимость подобных сборок выглядит весьма пугающей.

%D1%81%D0%BD%D1%836 Не имея базового представления о работе смесительных узлов разобраться в их устройстве – не так просто

Но, оказывается, на практике реализуется всего несколько ходовых схем, и если понять принцип их действия, тол подобный насосно-смесительный узел вполне можно собрать и собственными силами. Разбору этих схем мы и посвятим следующий раздел нашей публикации.

Необходимо сразу внести одну ясность – данная статья посвящена именно насосно-смесительным узлам, а вот подключаемые к ним коллекторы подачи и «обратки» упоминаться, безусловно, будут, но в их устройство углубляться не станем. Просто по той причине, что этот узел системы «теплого пола», а именно – его устройство, принцип действия, порядок сборки и балансировки, все же требуют подробного рассмотрения в отдельной публикации.

Схемы насосно-смесительных узлов и принципы их действия

Изо всего разнообразия схем подобных смесительных узлов было выбрано пять. Основными критериями выбора служили простота восприятия принципа работы и доступность в самостоятельном изготовлении. То есть предлагаемые конструкции вполне можно собрать из деталей, имеющихся в свободной продаже, и для этого не требуется специальной подготовки – достаточно устойчивых навыков в проведении обычного сантехнического монтажа.

Схемы, безусловно, различаются, но для простоты их восприятия они сделаны по одному графическому принципу, с сохранением изображений и нумераций одинаковых элементов. Новым деталям, которые будут появляться в схемах, будут присваиваться буквенные обозначения по нарастанию.

Во всех схемах принята одна ориентация – подвод труб подачи и «обратки» слева, а выход на «гребенки» — коллектор теплого пола – справа. Цветовая маркировка труб наглядно говорит об их предназначении. Сам коллектор в реальности может непосредственно примыкать к насосно-смесительному узлу (так бывает чаще) или даже располагаться на некотором отдалении от него – это зависит от особенностей помещения и свободного места для размещения оборудования. На принципе работы схемы это нисколько не отражается.

Трубы могут использоваться любые, по желанию мастера – от обычных стальных ВГП до пластиковых (полипропилен или металлопласт) или гофрированной нержавейки. Соответствующим образом будут меняться и некоторые комплектующие. Так, например, на схемах показаны латунные тройники или отводы, но они могут быть исполнены и из иных материалов.

Соответствующими утолщенными стрелками с изменяемыми оттенками показаны направления потоков теплоносителя.

СХЕМА №1

В данной схеме используется обычный термоклапан, как для радиаторов отопления. Циркуляционный насос расположен последовательно.

Схема считается одной из наиболее простых для монтажа, но она вполне действенная.

%D1%81%D0%BD%D1%837 Одна из самых простых схем насосно-смесительного узла с последовательным расположением циркуляционного насоса

Давайте подробно пройдемся по деталям и устройствам, составляющим схему:

— «а.1» – вход трубы подачи из общего контура системы отопления;

— «а.2» – выход в трубу «обратки»;

— «а.3» – подача на коллектор «теплого пола»;

— «а.4» – возврат теплоносителя с коллектора.

Особых требований к конструкции запорных кранов для смесительного узла не предъявляется, кроме, пожалуй, качества их исполнения. Но желательно применять краны, оснащенные накидной гайкой-«американкой» (как показано на иллюстрации), что позволит быстро проводить демонтаж узла, не прибегая к сложным операциям. Соответственно, на входе («б.1» и «б.2») эти накидные гайки должны быть со стороны смесительного узла.

Краны «б.3» и «б.4» (между смесительным узлом и коллектором) нельзя назвать обязательными элементами системы, но лучше не пожалеть денег и на них. Их наличие позволяет отключать коллектор и полностью демонтировать узел, не сбивая выверенной балансировки контуров.

Этот элемент можно и не ставить, но только в том случае, если есть полная уверенность в чистоте циркулирующего теплоносителя. Обычно фильтрующие устройства предусматриваются на уровне котельной. Тем не менее, чтобы полностью исключить вероятность попадания твердых взвесей в область точной регулировки «теплых полов», можно и подстраховаться.

Стоит такой фильтр недорого, но зато появится гарантия, что в клапанные устройства самого смесительного узла и настроечных механизмов контуров не попадут никакие твердые частицы, способные нарушить их корректную работу. Кроме того, следует помнить, что твердые взвеси в теплоносителе ускоряют износ уплотнений клапанов.

Тип термометра может быть любой – как удобно мастеру. Так, применяются приборы с зондами, которые контактируют непосредственно с теплоносителем. Если попроще – можно приобрести накладную модель, но замер уже будет вестись по температуре стенки трубы. Термометр может быть жидкостной, механический со стрелочным указателем или даже цифровой – он удобен при использовании электронных систем управления системами отопления.

На схеме показан вариант с использованием трех термометров:

«г.1» – замеряет температуру в общей трубе подачи системы отопления;

«г.2» – для контроля температуры теплоносителя, подаваемого со смесительного узла на коллектор;

«г.3» – позволяет отслеживать разницу температур на входе и выходе коллектора. Оптимально эта разница не должна превышать 7÷10 градусов.

Такое расположение приборов видится оптимальным, так как дает наиболее полную картину корректности работы системы. Впрочем, многие мастера из соображений экономии обходятся и меньшим количеством термометров.

Небольшая тонкость. В продаже представлены клапаны для радиаторов, рассчитанные на однотрубную и двухтрубную системы отопления. В нашем случае для смесительного узла предпочтительнее будет модель для однотрубной системы, как более производительная. Ее легко отличить по ряду признаков: такой клапан имеет несколько больший диаметр «бочонка», в маркировке присутствует буква «G», а защитный колпачок – серого цвета.

Направление тока теплоносителя указано на корпусе клапана стрелкой.

Устройство головки таково, что при изменении температуры меняется и ее механическое воздействие на шток термоклапана – при повышении клапан закрывается, при понижении – наоборот, открывает проход теплоносителю.

%D1%81%D0%BD%D1%8313Как устроены и как действуют терморегуляторы для радиаторов отопления?

В данной публикации детально останавливаться на этих устройствах не станем. Это из тех соображений, что устройство и принцип действия терморегуляторов для радиаторов отопления подробно рассмотрены в отдельной статье нашего портала.

Термодатчик накладывается на трубу – для этого имеются специальные пружинные фиксаторы. Но сразу возникает вопрос – а где именно он должен стоять?

Возможны два варианта, каждый из которых хорош по-своему.

Первый вариант: датчик стоит на трубе подачи от смесительного узла в коллектор «тёплого пола». Преимущества такого подхода – в контуры поступает теплоноситель со стабильной температурой, то есть полностью исключается возможность перегрева. Недостатки – система смешения никак не реагирует на изменение внешней температуры (если, конечно, соответствующие дополнительные устройства не размещены на самом коллекторе). Например, при похолодании в помещении или подъеме температуры, смесительный узел все равно будет подавать на контуры теплоноситель с неизменяемым уровнем нагрева.

Второй вариант: датчик стоит на трубе обратки от коллектора до смесительного узла (до перемычки, в районе термометра «г.3»). Преимущества – стабильность температуры именно на этом участке, то есть с учетом уже отданного в помещение тепла. А вот уровень нагрева теплоносителя в трубе подачи на коллектор будет варьироваться в соответствии с изменением внешних условий. Похолодало в комнате – контуры отдали больше тепла – термоклапан приоткрылся больше, и соответственно, наоборот. Недостатки – наличие вероятности перегрева в контурах «тёплого пола». Например, после заполнения системы при первом ее пуске в коллектор на первых порах будет подаваться слишком горячая вода, пока не прогреется стяжка. Другой вариант – слишком резкое похолодание в помещении (например, экстренное проветривание открытием окон настежь) также может дать приток в контуры слишком горячего для них теплоносителя.

Впрочем, при продуманной эксплуатации всего этого негатива можно избежать. А еще лучше – предусмотреть участки для размещения термодатчика на обеих трубах в указанных выше местах. Переставить такой датчик – минутная задача, не требующая никаких инструментов.

Оптимальное решение – установка не сантехнического вентиля, а так называемого блок-крана, такого, какой частенько ставится на «обратке» радиатора отопления. По функциональности, в принципе, разницы нет никакой, но в плане обеспечения сохранности настроек – она очевидна. Балансировка проводится специальным ключом, а после этого регулировочное устройство закрывается защитной заглушкой. То есть до него не дотянутся, например, шаловливые детские ручки.

В основной системе отопления, безусловно, есть свое насосное оборудование, но «теплым полам» как правило, выделяется отдельный насос, с учетом протяженности и разветвленности проложенных контуров труб. Насос – обычный, а его параметры рассчитываются индивидуально для каждого смесительного узла – об этом речь еще пойдет ниже.

Цены на термоклапаны

%D1%81%D0%BD%D1%8316Циркуляционные насосы – устройство, принцип действия, выбор оптимальной модели

Насколько он нужен? В процессе смешивания, безусловно, он никакой роли не играет, но вот для обеспечения постоянной корректности работы может стать нелишним. Представим ситуацию – в контурах температура такова, что притока тепла не требуется, и термоклапан полностью перекрыт. Но насос продолжает работать, и циркуляция в контурах не прекращается. И вот здесь возможно явление подсасывания теплоносителя из общей трубы обратки системы отопления. А ведь там температура даже намного выше, чем должна быть в подаче «теплого пола». Подобный приток несанкционированного тепла может здорово разбалансировать работу смесительного узла, но установка клапана полностью снимает даже малейшую вероятность такого явления.

Теперь перейдем к рассмотрению принципа действия этой схемы.

Теплоноситель поступает из общей трубы подачи, доочищается на «косом фильтре». На термоклапане поток заметно снижается за счет прикрытой задвижки, уменьшающей сечение свободного прохода. За изменение положения клапана отвечая термостатическая головка, передающая механическое усилие на его шток, в зависимости от температуры на выносном термодатчике.

Циркуляционный насос работает постоянно, и перед ним, в области тройника «з.1» создается зона разрежения, которая затягивает и изменяющийся поток горячего теплоносителя, и охлаждённого – из трубы обратки через байпас. Потоки соединяются именно в упомянутом тройнике, смешиваются, и в таком виде, с нужной температурой, прокачиваются насосом далее на коллектор «теплого пола».

Если термодатчик показывает, что уровень нагрева достаточен или даже избыточен, клапан будет полностью закрыт, и насос станет просто прокачивать теплоноситель по кругу, без притока его извне. По мере постепенного остывания теплоносителя клапан приоткроется, чтобы добавить очередную «порцию» тепла, так, чтобы температура приняла необходимое значение.

Как видно, приток горячего теплоносителя при хорошо отлаженной системе будет не особо большим – в нормальном положении при стабильной работе узла, клапан бывает едва приоткрытым. Но в случае изменения внешних условий термоголовка внесет необходимые коррективы.

В данной схеме циркуляционный насос расположен таким образом, что он полностью перекачивает весь поток теплоносителя на коллектор «теплого пола». Этот принцип называют последовательным расположением насоса.

СХЕМА №2

Схема во многом повторяет первую, но вместо обычного термоклапана в ней применяется трёхходовой.

%D1%81%D0%BD%D1%8318 Схема, аналогичная первой, но со своими особенностями

Итак, смотрим на особенности конструкции:

Вместо верхнего тройника устанавливается трехходовой смесительный термоклапан («н»), а обычный клапан из схемы, соответственно, изъят. Управляет же этим устройством все та же термоголовка с выносным датчиком, что и в первой схеме. Положение датчика также не изменяется – один из двух упомянутых выше вариантов.

%D1%81%D0%BD%D1%8319 Трехходовой клапан с термоголовкой и выносным датчиком температуры

Смешение потоков происходит непосредственно в корпусе трехходового клапана. Он устроен таким образом, что при изменении положения штока один проход приоткрывается а второй пропорционально закрывается.

Необходимо обратить особое внимание на один нюанс. Такие клапаны могут быть не только смесительного, но и, наоборот, разделительного принципа действия. На показанной схеме требуется клапан именно смесительный, то есть с двумя сходящимися потоками. Как правило, на корпусе изделия имеется соответствующее указание – стрелки, демонстрирующие направление потоков теплоносителя.

%D1%81%D0%BD%D1%8320 Пример смесительного термоклапана: стрелки показывают поступление потоков «А» и «В» и направление выхода смешанного потока «АВ»

Показанная схема может иметь и иную вариацию – термоклапан установлен вместо нижнего тройника, но здесь, понятно, уже должна стоять разделительная разновидность изделия. То есть управляться температура станет изменением подаваемого потока из обратки.

%D1%81%D0%BD%D1%8321 Стрелки явно указывают, что это трёхходовой термоклапан разделительного типа, и устанавливаться он может только в нижней точке байпаса

Трехходовые краны могут и не требовать термоголовки — у многих моделей имеются свои встроенный датчики температуры. Правда, некоторые мастера выражают мнение, что с выносным датчиком система работает все же корректней, и вероятность возникновения нештатных ситуаций – гораздо ниже.

%D1%81%D0%BD%D1%8322 Термоклапан трехходовой смесительный со встроенным термодатчиком и собственной шкалой регулировки

На схеме показан (полупрозрачным) еще и обратный клапан («м1»), установленный на байпасе. Он бывает необходим в тех случаях, когда автоматика управляет еще и работой циркуляционного насоса. Если клапана не будет, то в режиме простоя циркуляции байпас становится обычной неуправляемой перемычкой, что сразу сказывается на сбалансированности узла и на работе других отопительных приборов системы отопления. Но в большинстве случаев, когда насос работает постоянно, такая деталь в схеме не требуется, а многие мастера вообще считают ее вредной, так как такой клапан создаёт дополнительное гидравлическое сопротивление.

Когда выгодно использовать такую схему с трехходовым клапаном? Как правило, она находит применение в крупных смесительных узлах, к которым подключено несколько контуров, причем – различной протяженности. Оправдана одна и в системах отопления, которые управляются погодозависимой автоматикой, так как изменение параметров в них идет не только за счет клапана, но и за счет изменения режимов работы циркуляционного насоса. В небольших системах применение подобной схемы – не особо приветствуется, так как она будет сложнее в регулировке.

СХЕМА №3

Еще одна вариация схемы с последовательным расположением циркуляционного насоса. В этот раз также применен трёхходовой термоклапан («н.1»), но уже иной компоновки – он смешивает два сходящихся по одной линии потока и перенаправляет их в центральный патрубок.

%D1%81%D0%BD%D1%8323 Использование трехходового термоклапана, смешивающего встречные потоки, позволяет сделать схему более компактной

Такие клапаны имеют соответствующую маркировку – стрелочную или цветовую, что позволяет не ошибиться в выборе.

%D1%81%D0%BD%D1%8324 Термоклапан для микширования сходящихся потоков теплоносителя. Цветными точками ясно показаны входы подачи и обратки

В остальном же схема – полный аналог предыдущей. Байпаса может вообще не быть – вместо него смонтирован трёхходовой клапан, что дает немалую экономию места, и схема получается более компактной.

СХЕМА №4

Эта и следующая схема имеют коренное отличие от рассмотренных выше, и это принципиальная разница заключается в расположении циркуляционного насоса

%D1%81%D0%BD%D1%8325 Схема смесительного узла с обычным термоклапаном и с параллельным подключением циркуляционного насоса

Как видно из схемы, никаких новых элементов в ней не появилось. Трубы подачи и обратки со стороны общей системы – остались на месте, а вот со стороны коллектора – поменялись местами. Байпас, естественно, остается, но получается, что потоки горячего и остывшего теплоносителя встречаются в его верхней точке. А на самом байпасе разместился циркуляционный насос, обеспечивающий прокачку сверху вниз.

Принцип работы заключается в следующем. Поток горячего теплоносителя проходит через термоклапан, где дозируется до нужного количества, и встречается в верхнем тройнике байпаса с потоком из «обратки» коллектора. Стоящий на байпасе насос захватывает эти оба потока и прокачивает вниз. Таким образом, микширование происходит как в верхнем тройнике, так и в рабочей камере самого насоса.

В нижней точке байпаса, в тройнике, поток вновь разделяется. Большая часть прокачанного теплоносителя уже нужной температуры обычно возвращается в коллектор и далее – в контуры «теплого пола». А образовавшийся излишек – просто сбрасывается в «обратку» основного контура общей системы отопления.

Достоинством подобной схемы можно считать ее компактность, что бывает важно при недостаточности места под установку смесительного оборудования. Но недостатков у не все же больше:

— Производительность системы снижается, так как часть перемешанного теплоносителя попросту сбрасывается в линию «обратки».

— Подобная схема – намного сложнее в балансировке, так как необходимо добиться полного постоянного заполнения контуров «теплого пола», без участков разрежения, и только избыточное количество отправить в «обратку». Часто это требует установки дополнительных балансировочных элементов, например, блок-кранов или перепускных клапанов.

Интересно, что, видимо, в угоду компактности, большинство смесительных узлов промышленного изготовления собирается именно по параллельной схеме установки циркуляционного насоса. И это нередко побуждает народных умельцев несколько видоизменять заводские схемы установкой дополнительных перемычек – так, чтобы прийти к более производительной и более простой в настройке схеме с последовательным расположением насоса.

СХЕМА №5

Про эту схему можно много не рассказывать – все уже должно быть понятно. Отличие ее от предыдущей – только в использовании трёхходового термоклапана (смесителя), работающего по принципу смешивания встречных потоков.

Цены на термоголовки

Следует заметить, что существуют и гораздо более «навороченные» схемы, которые реализуются в смесительных узлах заводского производства. Но собирать их самостоятельно – вряд ли имеет смысл. Вполне можно выбрать вариант их предложенных выше.

Как определиться с основными параметрами смесительного узла?

Если принято решение собирать смесительный узел для «теплого пола» своими руками, то необходимо при подборе комплектующих следить, чтобы их параметры соответствовали характеристикам системы. Здесь речь идет не столько о диаметрах и монтажных размерах (хотя и это очень важно), сколько о производительности основных элементов узла (насоса и термоклапана), то есть о способности пропустить через себя необходимый объем теплоносителя в единицу времени.

А для циркуляционного насоса важен и еще один параметр – показатели создаваемого им напора жидкости. Насос обязан обеспечить нормальную циркуляцию во всех подключённых к узлу контурах «теплого пола», то есть преодолеть их гидравлическое сопротивление, а протяженность проложенных труб может быть весьма внушительной.

По правде говоря, проведение подобных вычислений – это удел специалистов. Но со вполне приемлемой степенью точности выполнить такие расчеты можно и самостоятельно, и мы в этом поможем.

Ознакомьтесь с устройством элеваторного узла системы отопления, его назначением и расчетами, из новой статьи на нашем портале.

Определение требуемой производительности насосно-смесительного узла

Этот параметр важен как для насоса, так и для термостатического клапана. Правда, насос выступает в роли активного узла, который и обеспечивает перекачку требуемого объема. Клапан же должен суметь пропустить через себя это количество жидкости, и они выпускаются с различными уровнями пропускной способности, которая, кстати, может даже регулироваться на них самих специальным кольцом предустановки.

Не станем загружать внимание читателей формулами, а предложим воспользоваться онлайн-калькулятором расчета. Несколько пояснений по проведению вычислений будут приведены ниже.

Калькулятор расчета производительности насосно-смесительного узла

Пояснения по выполнению расчетов

Здесь тоже может быть различие – одно дело, когда «теплый пол» является единственным источником тепла, и совершенно другое – когда он организуется только в целях поддержания более комфортной атмосферы в комнате: количество тепловой энергии будет отличаться. В полях ввода данных необходимо указать эти значения площади, с возможным их разграничением по указанному признаку. При этом если «теплый пол» делается для кухни, ванной, санузла или прихожей, то лучше сразу указывать, что он является основным источником тепла.

Итоговый результат будет показан в кубометрах в час, литрах в минуту и в секунду – как кому удобнее для восприятия.

Какой минимальный напор должен создавать циркуляционный насос смесительного узла?

В общей системе отопления, безусловно, стоит свой циркуляционный насос, но надеяться на напор, созданный им, не приходится. Как было видно из приведенных схем и принципов их работы, зачатую клапан закрывается полностью, и все давление, требуемое для циркуляции теплоносителя по контурам теплого пола, будет обеспечивать только насос, встроенный в смесительный узел.

Расположенный ниже калькулятор поможет определиться с минимальным значение требуемого напора. А под приложением – несколько разъяснений по работе с ним.

Калькулятор определения минимально необходимого напора циркуляционного насоса

Пояснения по проведению расчетов

Кроме самих труб, немалое сопротивление оказывают и другие элементы системы – фитинги или клапаны. Но поправка на это обстоятельство уже учтена в алгоритме расчета.

При выборе насоса имеет смысл ознакомиться с его техническим паспортом – там обычно прикладывается диаграмма оптимальных соотношений производительности и создаваемого напора в различных режимах работы (большинство современных приборов имеет переключатель таких режимов).

Монтаж смесительного узла своими руками

Следует правильно понимать, что единой технологии сборки смесительного узла нет, да и не может быть. Тот, кто разбирается в приемах сантехнического монтажа, понимает, о чем идет речь, и ему достаточно принципиальной схемы, чтобы подобрать нужные комплектующие и с ними произвести самостоятельную сборку. Тем более что нет и единства подходов к этому делу. Так, одним мастерам больше нравится заниматься с металлом, используя резьбовые соединения. Другие – являются «апологетами» металлопластика, и всёе стараются выполнить именно с его использованием. У третьих имеется сварочный аппарат для полипропилена, и они считают, что дешевле всего будет собрать узел преимущественно из таких деталей. Так что оценивайте свои способности и финансовые возможности и выбирайте технологию монтажа самостоятельно.

Если же опыта нет никакого, то считать сборку смесительного узла «полигоном» для наработки навыков – все же не следует. Лучше для начала потренироваться на более простых соединениях.

В представленном ниже примере мастер применяет металлические комплектующие, и что характерно – широко использует сопряжения деталей накидными гайками-«американками», то есть обходится практически без «запаковки» соединений – достаточно применения прокладок. Безусловно, очень удобный подход, правда, не особо дешевый. Но зато, наряду с надежностью соединений, обеспечивается возможность демонтажа любого элемента создаваемого узла, например, для его замены.

Если же попроще да подешевле – то же самое можно сделать и с обычными резьбовыми соединениями, «запаковывая» на паклю с герметизирующей пастой, на фум-ленту или на другой современный уплотнитель – благо, недостатка в подобных материалах в наше время нет.

И в завершение публикации – еще один наглядный пример самостоятельной сборки несложного смесительного узла для системы «теплого пола». Примечательно то, что мастер комбинирует две технологии монтажа – резьбовые соединения металлических элементов и паянные — из полипропиленовых деталей.

Видео: Простой в исполнении смесительный узел – своими руками.

Источник

Поделиться с друзьями
admin
Здоровая спина
Adblock
detector