Термопрокладка своими руками для ноута

Содержание

Делаем термопрокладки из термоклея.

Делаем термопрокладки из термоклея.

Давно собирался опробовать эту технологию да все руки не доходили, но к счастью недавно случилась неприятность и после вскрытия очередной старой карты имеющиеся там термопрокладки (далее ТП) просто рассыпались. Вот и повод нашелся, обрадовался я, предвкушая что то интересное.
Энтузиазм забурлил, но тут же уперся в плотину почти сакраментального вопроса «что именно делать»?
Тут я немного углублюсь в историю и перечислю 3 классических варианта решения проблемы, а именно:
1. Найти нормальные ТП.
2. Слепить ТП самому из марли, термопасты и такой то матери. Быстро, дешево, практично. И крайне не эстетично.
3. Подобрать медные или алюминиевые пластинки нужной толщины и поставить их на термопасту.

Теперь рассмотрим реализацию этого в реальных условиях провинции:
1. Новые ТП нужной толщины. С одной стороны самое простое, а с другой стороны в наших магазинах их не бывает в принципе, ну кроме столиц.
Поэтому единственный способ их заполучить это заказывать по инету из Китая или еще какого места.
Правда придется ждать месяц или около того. Для меня не вариант.
2. Слепить ТП самому из марли, термопасты. Можно, видок у этих поделок. К тому же запаса дешевой термопасты у меня под рукой не было, а переводить МХ-2?! Да за такое кощунство меня жаба не только придушит, но еще и закопает! Бежать в магазин за народной кпт лень. В топку.
3. Подобрать медные или алюминиевые пластинки? Действительно очень неплохой вариант, во всяком случае ТТХ будут лучше чем с ТП, но к сожалению в моих в закромах не было не только медных, но даже алюминиевых пластин.
Искать же в наших гондурасах пластины требуемой толщины можно до морковкино заговенья! Отпадает.

Короче перебрав все известные методы, я последовательно отказался от каждого и с чистой совестью перешел к собственной идее по применению термоклея в качестве ТП.

Для начала рассмотрим какие преимущества имеет термоклей:

1. прочность — в отличие от ТП не деформируется и не рвется.
2. обладает диэлектрическими свойствами.
3. немного эластичен и после высыхания, не так как термопрокладка, но и не камень.
4. позволяет делать термопрокладки любой толщины и формы.
5. легко доступен, что в наших условиях решающее преимущество.

Для реализации требуется собственно термоклей, кусок тонкой пленки и термопаста.

Сама по себе технология проста как мычание:

1. подбираем прокладки под крепления радиатора (например скотч или изоленту в несколько слоев), чтобы получить необходимый зазор между ним и охлаждаемыми деталями.
2. закрываем (в данном случае) мосфеты тонкой пленкой. 0u676e16d5 1393dece 454df966
3. наносим слой термоклея на предварительно обезжиренный радиатор.
4. устанавливаем радиатор на карту. 0u2b100d00 24229fb1 1b20d9fb
5. ждем пока клей высохнет.
6. снимаем радиатор и убираем пленку — которая ясень пень не прилипает к клею. 0uda23e450 284c60aa 38fcc4830u3481eddc 47bbe4ad 19b0548f
7. намазываем все контактные места любой термопастой
8. собираем окончательно, любуемся.
9. тестируем, радуемся результату и гордимся собой.

Заодно пара фоток с установки радиатора на питальник r9 290: 0u758c515d 2bef1b2d 4714dc530ue6878060 60ef8e60 2bba26f8

Тестов как таковых пока не будет, поскольку нет возможности сравнить на одном железе разные ТИ, да особо и незачем. Могу привести пример по эксплуатации r9 290 с СВО — при обдуве 120мм вентилем питальника с показанным радиатором при полной загрузке (майнинг) на стоковых частотах с напругой 1.21в температура в закрытом корпусе +80гр
Таким образом по температурам этот метод соответствует обычному приклеиванию, т.е. чуть хуже термопасты и чуть лучше ТП.

Всем кстати: недавно экспериментировал в рамках этой технологии с термоклеем (радиал) и выяснил что при смешивании его с термопастой (кпт-8) 1:1 полученный продукт получается мягким почти как термопрокладки, хорошо держится на поверхности (конкретно алюминиевой) и при этом удаляется без значительных усилий в отличии от оригинального клея. Короче рекомендую. 0u1767fc40 abeefb10 966c6cf0

Источник

Обзор альтернатив термопрокладке

Статья представляет собой обзор наиболее популярных альтернатив термопрокладке.

реклама

реклама

Термопаста

реклама

Как странно бы это бы не звучало, но именно термопасту можно назвать первой доступной заменой термопрокладке. Но здесь необходимо сделать одну оговорку: она подойдет лишь в том случае, когда зазор между теплопроводящими поверхностями составляет не более 0.2 мм, и сама паста, желательно, должна быть густой, в противном случае – ваши старания будут напрасны.

Металлическая пластина

реклама

Пожалуй, самая стоящая и действенная альтернатива силиконовому термоинтерфейсу, ибо, как известно, теплопроводность металлов одна из самых высоких среди остальных веществ (например, у серебра 430 Вт/м*К, а у термопрокладки – 6-8 Вт/м*К). Пластины можно вырезать самому, а можно заказать со всем известного китайского сайта. Если решитесь поработать руками, то рекомендовал бы три следующих металла: алюминий (теплопроводность 210 Вт/м*К), латунь (100 Вт/м*К) и медь (400 Вт/м*К ) – сам использовал латунь, вопросов к пластине не имею. Во втором случае Вам будут предложены медные пластины. Встречал мнение, якобы качество шлифовки влияет на теплопроводность – нисколько, если Вы, конечно, не собрались ставить пластину без термопасты.

Отдельно стоит вопрос о толщине пластины: какую выбрать? Можно поискать в Интернете, измерить зазор самостоятельно. Я немного облегчу кому-нибудь жизнь и приведу зазор у некоторых моделей ноутбуков от разных производителей (данные взяты мной отсюда): Asus Eee Pc 1015PX —

1,5 мм; Acer Aspire 5520, 5741, 5742, 7520 —

1 мм; Acer Extensa 5220 —

0,5 мм; Acer Travelmate 8572(G) —

0,5 мм; Acer Aspire 5551, 5552 —

0,5 мм; Acer eMachines D640 —

0,5 мм; HP 625 и HP Pavilion dv6 —

0,5 мм; HP ProBook 4510s, 4525s —

1,5 мм; Dell Inspiron 7720 —

1 мм; Lenovo G550 — 1 мм. Зазор видеокарт предлагаю измерить самостоятельно.

Оригинальные выдумки

Кроме всего выше сказанного, подметил в Интернете пару интересных выдумок, не совсем практичных, но, пожалуй, достойные внимания (может делать нечего или срочно надо термоинтерфейс):

Самодельная термопрокладка из бинта или из алюминиевой фольги: для создания необходимо в несколько слоев сложить исходный материал, плотно сжать, покрыть материал термопастой (бинт полностью, а фольгу – только верхние слои).

Теплопроводный клей или смесь клея с термопастой. Первый случай думаю понятен, во втором же рекомендуется использовать густую термопасту.

Источник

Термопрокладка для ноутбука своими руками. Замена термопрокладки в ноутбуке

В ноутбуке есть комплектующие, которые очень сильно нагреваются в процессе работы. Это нормально, и для отвода тепла из корпуса используются специальные технологии охлаждения в виде термопрокладок для ноутбуков. Однако со временем они могут приходить в негодность и требовать замены. Это будет сказываться на сильном нагреве корпуса, а иногда ноутбук будет просто отключаться. Если это происходит, то самое время идти в сервисный центр либо попытаться самостоятельно произвести замену термопрокладки в ноутбуке. Сделать это несложно, хотя повозиться придется. Но для начала нужно понять, как там все устроено.

1854899

Что такое термопрокладка для ноутбука?

Есть такое понятие как «термоинтерфейс». Он представляет собой слой между процессором и радиатором и предназначается для увеличения теплопроводности и снижения теплового сопротивления. Часто используется для этой цели термопаста – вещество с высокой теплопроводностью. Вопреки распространенному мнению, термопаста ничего не охлаждает, она просто усиливает эффективность передачи тепла от нагревающегося процессора к радиатору.

Вторым по популярности тепловым интерфейсом является термопрокладка для ноутбука. Это небольшая пластинка, устанавливаемая между процессором (или другим нагревающимся элементом) и радиатором (охлаждающим элементом). Прокладка является эластичной, и она идеально заполняет возможные зазоры, которые почти всегда есть между поверхностями. Также считается, что эта пластина лучше справляется со своей работой, т. к. паста не может справиться с большим объемом работ.

В зависимости от размера микросхем, можно подобрать правильную прокладку. Они бывают разных размеров и толщины. Кто-то советует подбирать прокладку толщиной 1 мм, но в идеале необходимо замерить старый термослой и выбрать прокладку такой же толщины. А вот использовать старый слой нельзя, иначе чипсет будет перегреваться, что постоянно будет приводить к отключению компьютера. Со временем микросхемы будут плавиться и в конечном итоге расплавятся полностью.

Керамические прокладки

1854880

Термопрокладки могут быть выполнены из керамики, меди, силикона. Из этих трех материалов керамика является лучшим проводником тепла, поэтому она отличается более высокой эффективностью. Самые лучшие те, которые произведены из нитрида алюминия – керамики. Несмотря на название, это все равно керамика с классными характеристиками. Прокладка из этого материала устойчива к температурным или химическим воздействиям, она реально уменьшает рабочие температуры полупроводников и в процессе нагрева не теряет своих свойств проводника тепла.

Силиконовые

1854881

Силикон также устойчив к высоким температурам и очень часто используется в ноутбуках для отвода тепла от процессора и мостов. Также может применяться как термопрокладка для видеокарты ноутбука. Используется силикон в тех случаях, когда нет контакта между двумя поверхностями. Силиконовая прокладка является более эффективной по сравнению с термопастой. К тому же она эластична и может сжиматься или разжиматься, тем самым более эффективно заполняя пустое пространство.

Медные

1854882

Медные прокладки обладают более высокой теплопроводностью, но их использовать сложнее. Для установки такой прокладки необходим герметик, который закроет просвет между радиатором и нагревающейся поверхностью. Использование такого слоя изоляции трудоемко, но это оправдывается более высокой эффективностью.

Чем заменить термопрокладку в ноутбуке?

Если вы раскрутили свой ноутбук и обнаружили, что прокладка нуждается в замене, а купить ее негде, то можно попробовать сделать ее самостоятельно. Изготовить термопрокладку для ноутбука своими руками несложно. Способов существует несколько. Наиболее популярный из них предполагает использование бинта.

Для этого нам необходимо сложить в бинт в 4-5 слоев. Предварительно его можно пропитать в термопасте, ведь если просто намазать ее на бинт, то он расползется. Теперь прикладывайте бинт к процессору, и если он будет немного выпирать за границы, то ничего страшного. Главное, чтобы ваша прокладка плотно прилегала.

Результаты тестирования этого слоя особо не впечатляют. Такая термопрокладка для ноутбука не позволяет процессору нагреваться свыше 80 0 С при просмотре фильма, но если нагрузить ноутбук играми, то он аварийно выключится. Но на время такой вариант сгодится.

Алюминиевая пластина (или медная) станет лучшим вариантом для самодельной прокладки. Алюминий (как и медь) обладает хорошей теплопроводностью. Для изготовления нам нужен небольшой лист толщиной всего 1 мм. Но достать такой сложно. Как вариант, можно заказать на «Алиэкспрессе».

Вырезать прокладку можно на глаз и не выверять точность до миллиметра. В теории, чем больше будет площадь пластины, тем больше тепла она сможет отвести. Главное, чтобы пластина очень плотно прилегала к поверхности. Мастера, проверившие метод на практике, рассказывают, что после установки пластины и запуска ноутбука программа тестирования температуры показывала 50 0 С. Но это в режиме покоя, а при включении фильма температура поднялась до 68 0 С. Это хороший результат.

Китайские прокладки

На том же «Алиэкспрессе» можно заказывать китайские термопрокладки для ноутбуков. Они совсем не оправдывают ожидания, и после включения ноутбук нагревается мгновенно. Никакого эффективного отвода тепла от таких прокладок ждать не стоит. При просмотре видео температура процессора поднимается выше 90 0 С, что близко к критической отметке.

Термопаста как альтернатива

1854885

Слой термопасты толщиной 0,1 мм оказался наихудшим вариантом. После начала просмотра видео процессор нагрелся до 98 0 С и аварийно отключился. Поэтому не всегда уместно просто менять термопасту или использовать ее как замену термопрокладке. Ее эффективность хуже, причем настолько, что даже система аварийно отключается.

В любом случае указанные самодельные прокладки для постоянного использования не подойдут, однако на небольшой промежуток времени можно брать их. К тому же такие прокладки не позволят нагружать ноутбук более-менее серьезно, поэтому не стоит их рассматривать как постоянный вариант охлаждения процессора.

Источник

Тест термопрокладок Laird TFlex 740, Arctic Thermal Pad, Gelid GP-EXTREME THERMAL PAD

no avatar.a7e00f4

Думаю, бесспорным будет утверждение, что термопасты Arctic MX-2 и MX-4 самые лучшие. Остальные производители подобных продуктов, в лучшем случае, повторят результат теплопроводности либо будут отставать. За хорошее качество нужно платить и часто приходится искать компромисс между ценой и производительностью. Поэтому и существует большое разнообразие производителей термоинтерфейсов. Надеюсь, что места на рынке хватает всем.

Давным-давно я сделал для себя выбор в сторону термопасты Laird T-grease 980. Она и дешевле и почти повторяет результаты Arctic MX-2. Не забываем, что при частом применении термопасты (особенно для ремонтных мастерских) цена имеет значение. Зато по другой причине я пользуюсь терморезинкой Laird TFlex 740, она лучшая среди всех, хотя и дороже. В нынешнем финансовом кризисе актуальным является поиск недорогих, но качественных материалов.

Терморезинка по теплопроводности всегда хуже термопасты. Там,где использовалась термопаста, ее нельзя заменить термопрокладкой, даже самой тонкой. И наоборот, нельзя заменить терморезинку термопастой.

Совсем недавно я обнаружил в магазине DNS в продаже Термопрокладка Thermal Pad от Arctic. Зная, какие хорошие у них термопасты, я естественно ожидаю того же результата от их терморезинок. Сайт производителя здесь.

Для сравнения результатов тестирования будут использованы 3 терморезинки: Arctic Thermal Pad (ACTPD00002A), Gelid TP-GP01-B, Laird TFlex 740.

Внешний вид и упаковка.

Arctic Thermal Pad

q93 0d29e2ce0bc8031dd078124ca217b5df1dd78ee060047514d5c9b02230d2dfb4

q93 e9950824efef6e93e2187bcb5b3b544a3676ee038b6b56dd815552b456f608a7

Arctic Thermal Pad поставляется в прозрачном пакетике. На нем наклейка с характеристиками продукта. Терморезинка светло-голубого цвета, толщина 1мм. На ощупь суховатая, мягкая, похожа на пластилин. Легко скатывается в шарик и не распрямляется. Структура термопрокладки однородная, без вкраплений, без марлевой «арматуры» и если присмотреться, то видна пористая структура материала.

q93 23a8a7f463b54ce37b17587d3ce4b2f09251b5f75b1e34be74b33e8be0af7911

С обоих сторон прокладка защищена прозрачной пленкой.

Gelid TP-GP01-B

q93 c5b41a73eaba8ee1374e31673c79e55a880e08780b1a68e99cf66c386014659f

q93 744e7204cc4524e1fe5d90dadfd4723fefbc9955c183b2b086b59b0b35e764f9

Gelid TP-GP01-B поставляется в картонной упаковке. На ней указаны характеристики продукта. Терморезинка серого цвета, толщина 1мм.

На ощупь термопрокладка похожа на пластилин. В шарик скатывается легко и не распрямляется. Структура однородная, без вкраплений и без марлевой решетки. В упаковке прокладка защищена с одной стороны прозрачной пленкой, с другой стороны голубой пленкой.

q93 7156012ec2e66096db1fc7b482107be624caaa1a4b790307528f457b16374b6b

Laird TFlex 740

q93 9a30ff82ab16fdce60471ecee722037864cd56aa3d5b75bdb3b23f299cf2c5f2

q93 2a4c66dad9cc2263675ff23ca2aea69bd8db974942f04ff775f1bb48b91918a8

Laird TFlex поставляется только большими пластами в OEM упаковке, без указания каких-либо характеристик. Терморезинка серого цвета, толщина 1мм. На ощупь термопрокладка похожа на пластилин. По всем ощущениям она похожа на Gelid TP-GP01. Так же легко скатывается в шарик и не распрямляется. Структура однородная, без вкраплений и без марлевой «арматуры».

q93 648da4ce712521b7173088cb1baf7293c8fd6563e8579f189a310d64c5340f83

q93 22ebda74b927f814db2f2168622a65fcc023e25ff52002ecdc21289a7af48b69

Технические характеристики, заявленные производителем.

Arctic Thermal Pad:

13156 7.1473737374

Теплопроводность (W/mK): 6

— Твёрдость по Шору: 25

Gelid GP-EXTREME THERMAL PAD (TP-GP01-B)

13156 8.1473737374

Теплопроводность (W/mK): 12

— Твёрдость по Шору: 35

Laird TFlex 740

13156 9.1473737374

Теплопроводность (W/mK): 5

— Размер: 100 x 100мм

— Твёрдость по Шору: 50

При выборе терморезинки всегда стоит обращать внимание на теплопроводность. Этот показатель определяет на сколько хорошо материал проводит тепло и чем выше показатель- тем лучше. Для сравнения трех терморезинок я вывел заводские характеристики в диаграмму. Gelid- бесспорный лидер в теплопроводности, но мне почему-то кажется, что это не правда.

Я хочу сравнить другой параметр, который определяет выбор в покупке товара- это цена. К сожалению, все испытуемые мною терморезинки не возможно купить в одном месте, поэтому сравнение будет очень неточным, но все-таки буду исходить из данной ситуации. Как правило, для установки прокладки на кристалл вырезается квадратик 1см*1см, поэтому постараюсь высчитать стоимость этого квадратика. Формула простая: стоимость в магазине разделить на площадь (длина*ширина) = стоимость 1см*1см.

13156 10.1473737374

Laird TFlex 1500/(10*10)=15

Arctic Thermal Pad 750/(5*5)=30

Gelid GP-EXTREME THERMAL PAD 750/(8*4)=23

А теперь тестирование.

Для тестирования я выбрал старенькую, простенькую видеокарту от Palit Geforce GT240.

13156 13.1473737374

Видеокарта обладает небольшим тепловыделением, но она еще не успела обзавестись новомодными энергосберегающими режимами. На мой взгляд, этот вариант максимально подходит для тестового инструмента. Тестирование будет проводится программой Furmark. В «зачет» пойдут максимальные результаты показания программы после 10 минут работы. Все показания будут занесены на диаграмму. Для сравнения будет зафиксирована температура работы видеокарты в Furmark на родной (заводской) термопасте.

13156 11.1473737375

Еще одно тестирование.

Тестовым стендом у меня выступит материнская плата от ноутбука DELL Inspiron N5110. Этот ноутбук хорош тем, что он есть у меня в наличии и у него присутствует дискретная видеокарта на чипе nVidia Geforce N12.

13156 14.1473737375

Недостатком этого стенда является то, что термотрубка является общей для видеокарты и процессора, поэтому я принял решение устанавливать термопрокладки и на кристалл видеокарты и на кристалл процессора. Тестовые программы будут Furmark для видеокарты и AIDA 64 для процессора. Программы будут запущены одновременно. Энергосберегающие режимы по возможности отключены. Температурные показания будут фиксироваться под нагрузкой, результаты будут выведены на диаграмму. В ноутбуке DELL Inspiron N5110 термопрокладки есть только на чипах памяти видеокарты, поэтому в результаты тестирования будут внесены температурные показания работы ноутбука с термопастой Arctic Cooling MX-2.

13156 12.1473737375

Заключение.

Хочу отметить хорошее качество термопрокладки Arctic Thermal Pad. Много лет назад я искал качественные терморезинки для замены их в ноутбуке при чистки от грязи. За долгий период времени, я перепробовал огромную кучу китайского «дерьма» в надежде найти то самое, что не уступит по качеству «заводским» прокладкам. Если пошариться в интернете, то будет много вопросов где найти качественные термопрокладки, т.к. он будет полн дешевых термоинтерфейсов с псевдо-большими показателями. Я же в итоге для себя нашел- это Laird TFlex 740. Да, недешево, но зато она очень эффективно работает в ноутбуках и видеокартах. И наконец-то появилась возможность приобрести термопрокладку в розничных магазинах DNS, которые присутствуют во всех городах Приморского края и России. Теперь нет проблемы, где ее купить.

На тестах, проведенные мною, Arctic Thermal Pad показала себя с лучшей сторон. Терморезинка справляется со своей задачей отлично. Производитель честно указал теплопроводность, в отличии от Gelid со своими 12 вт. Термопрокладки размером 5см*5см хватит примерно на 10 ноутбуков или на одну мощную десктопную видеокарту. Для тех, кто занимается ремонтом, нужно рассмотреть большой объем пластинки Thermal Pad.

Arctic выпускает самую лучшую термопасту и не менее замечательные термопрокладки.

Цель этой статьи:»пощупать» и сравнить с другими термопрокладку Arctic Thermal Pad. Кто-то будет утверждать, что медные пластины лучше или «бутерброд» из фольги дешевле, но речь в этой статье шла не об этом. Зато у вас есть возможность написать и расписать полезность меди или алюминия в охлаждении компьютерного железа. Тема про термоинтерфейсы, по-моему, бесконечная и у каждого из нас есть свой уникальный опыт.

Источник

МозгоЧины

#самоделки #инструкции #ремонт_техники #изобретения

МозгоЧины

#самоделки #инструкции #ремонт_техники #изобретения

Заводские и самодельные термопрокладки — кто кого!?

Заводские и самодельные термопрокладки — кто кого!?

www.mozgochiny.ru kak zamenit rodnuyu sistemu ohlazhdeniya 04

С наступлением жары компьютер становится громче и начинается борьба за градусы. Как снизить шум компьютера своими руками? Как сделать хорошие термопрокладки самому? В этой статье автор привёл тесты самодельных термопрокладок и стандартных, которые стояли с самого начала. Результат достоин внимания.

www.mozgochiny.ru kak zamenit rodnuyu sistemu ohlazhdeniya 04

Введение

Термопрокладка — неотъемлемая часть любой видеокарты у которой стандартная СО турбинного типа. Она устанавливается между областями контакта интенсивно нагреваемой области (видеопамять, GPU) и радиатором для лучшего отвода тепла.

В данной статье я расскажу как можно в домашних условиях сделать и установить термопрокладку не уступающую по производительности заводским.

Материалы

Для роботы нам понадобится:

d4c1dd2ed6

Пациент

Для эксперимента я использовал MSI NX8800GTS-T2D320E-HD-OC.

0382b6217f

В СО этой карты установлено 23 термопрокладки. Чипы памяти используют 10 термопрокладок, их мы и будем менять.

bc554ec4de

Изготовление и замена термопрокладок

Владельцы карт турбинного типа при перемазывании термопасты на GPU часто сталкиваются с проблемой отваливания или развала термопрокладок. Это может быть вызвано некачественной термопрокладкой, криворукостью пользователя, или просто термопрокладка изживает себя.

Термопрокладка, установленная в данной карте, это термопаста средней вязкости закрепленная двумя тонкими бинтами сверху и снизу пластины. Мы будем делать что-то на подобие заводской термопрокладки.

Для начала нужно снять заводские термопрокладки. После этого хорошо протереть и убрать остатки термопрокладок (если таковые есть) с памяти и с радиатора СО.

Потом вам нужно измерить площадь контакта памяти и СО. Потом по вашим замерам вырезать из бинта подходящий кусок. Вырезать нужно с запасом 5мм как в высоту так и в ширину, так как при смазывании бинта термопастой бинт немного стянется.

af06fa0dea

Отрезанные бинты мы будем смазывать термопастой. Для этого я использовал термопасту КПТ-8. Делать это нужно очень нежно, силу прикладывать нужно в меру, что бы не порвать бинт.

Вот так выглядит потенциальная термопрокладка:

9c9ecaf9ba

Термопасты нужно не переборщить, старайтесь мазать в меру. Почему же нельзя между памятью и СО просто наложить термопасты? Потому что при нагреве термопаста может потечь или растечься, что не есть хорошо, а бинт дает термопасте определенной прочности и вязкости, хоть и в небольшой ущерб теплопередачи, впрочем для памяти это не так критично как для GPU/CPU. Хотя как покажут дальше тесты новые термопрокладки выиграют

5 градусов у заводских.

Перед наложением смазанных бинтов, смажьте секции для памяти и саму память тонким слоем термопасты, это немного улучшит «дружбу» контактной области с бинтом. Тут желательно использовать термопасту не вязкую, а жидкую. Она послужит клеем между бинтом и контактной областью.

cd22d59973

Когда уложите термопрокладку, лишние бинты отрежьте ножницами. Затем хорошо утрамбуйте их тонкой отверткой.

5de573572d

Цепляем СО на место, и можно сказать что готово!

Многие из вас скажут что сделанные в домашних условиях термопрокладки проиграют заводским термопрокладкам. Я провел тестирование с помощью термопары.

Тестирование

Температура в комнате где проводилось тестирование была на уровне 24-25 градуса. Карта без модов и разгона. Частоты карты составляют 576/1350/1674 для GPU/шейдерного домена/памяти соответственно. Турбина у СО была раскручена на 100%, а это

Температура в режиме покоя была снята через 10 мин после интенсивной нагрузки карты GPU Caps Viewer в обеих случаях. Температура фиксировалась: Riva Tuner V2.24. В режиме покоя, температура GPU была 54 градуса, в режиме нагрузки температура GPU была 75 градуса.

Вот тестовый стенд:

Фото тестового стенда:

c635aa5979

Соломинку термопары я поместил между самой памятью и термопрокладкой, именно так я получу приближенные данные.

Температурные режимы

2cebcffdad

b206efd317

Как видно из графиков преимущество на стороне самодельных термопрокладок.

Самодельные термопрокладки ни только ничем не уступают термопрокладкам идущим в комплекте с СО видеокарты, а и выигрывают несколько градусов. Процесс замены не сложен. Все что для этого нужно это прямые оверклокерские руки, немного смекалки и конечно же времени.

Алюминий и медь

febd5e608d
В своем случае я не использовал ножницы по металлу так как не имею их. При покупке меди и алюминия я нарезал нужные себе пласты.

Измеряем площадь контактной области памяти и СО. После этого из металла вырезаем подходящие пластины.
8752d50211

Пластины должны быть максимально ровными и чистыми для лучшей проводимости тепла.

Отполированною и ровную пластину клеим на чипы памяти, предварительно смазав чипы термопастой.
896a217288

0e1f2adc1d
Я нарезал медь и алюминий одной пластиной, а не отдельно кусочками для каждого чипа потому что у меня возникли некоторые трудности про монтировании СО, но отрицательно на эффективности это не скажется. Нарезая пластины меди/алюминия важно покрыть всю площадь чипа памяти, не оставляя пустой площади. Так же стоит смазать на СО секции контакта с пластинами, термопастой.
Цепляем СО на место, и можно сказать что готово!
5a42771503
Тестирование
e6a8f8585e

Я не положил ее между пластиной и радиатором потому что температура GPU была 75, и я бы измерял температуру радиатора.

Результаты тестов
4ec78cec79

Как видно в режиме покоя карты особой разницы между медью и алюминием нет. Зато видна большая разница меди с заводской термопрокладкой.
99a3f44eef
Как показывает график абсолютным лидером термопрокладок оказалась медь, что впрочем и не удивительно. Она обладает очень высокой теплопроводностью. Аутсайдером оказалась заводская термопрокладка.

Вывод

Как видно, процесс замены не сложен. Все что для этого нужно это прямые руки, немного смекалки и конечно же времени. Возможно некоторые скажут что результат не стоит потраченного времени на замену термопрокладок, но в случаях когда каждый градус на счету, данная замена необходима.

Related Post

lab2

Братья-мозгочины, нужна ваша поддержка! Голосуем!

Maevskii dentifrice from Niva Magazine

Очень полезный зубной порошок своими руками

61

Капсула времени 2049

17 Replies to “Заводские и самодельные термопрокладки — кто кого!?”

Интересный опыт проведен, только вот наличие термопасты в любом случае позволяет существенно увеличить теплопередачу, а дополнительные источники движения воздушных масс ускоряют процесс охлаждения. Потому не стоит про такие вещи забывать.
PS Из своего опыта: После перегрева видеокарты и реальной возможности, произвел установку дополнительного вентилятора. Температура карты под нагрузкой упала на 20-30 градусов. После замены термопасты на тепловых элементах добился падения температуры на 30-35 градусов. Измерения проводил инфракрасным, дистанционным пирометром. Инструмент был поверен и имел погрешность +-1 градус.

15840

Ау люди! Здесь кто-то еще тусуется? Совет нужен. У меня на ноуте одна система охлаждения, одна медная трубка на чип и процессор. Я так понимаю, если повышенная теплоотдача будет на чипе, то процессор будет сильнее греться. Как правильно подобрать теплопроводность (5 W/m-K, 3 W/m-K, 1 W/m-K).

Я не волшебник я только учусь (на чужих ноутбуках) 🙂

Конечно тусуется) 3000 человек каждый день. Если я правильно понял вопрос, то чем выше, тем лучше. Метод проб и ошибок)

Подбирай «рандомным» способом

Закупал партию дохлого железа, попалась видяха с термопрокладками по похожей технологии. Только там вместо бинта использовалось что-то похожее на куски стеклоткани вырезаные по размеру родных «резинок»… Правда качество исполнения ужасное. Все что только можно было перемазюкано трермопастой.

-=sTs=-, прочитал отчет, спасибо. сделал для себя выводы, так как сам задумывался чем можно заменить штатные термопрокладки или симпровизировать, если их вообще нет. а Виталий в явном виде просто специалист по сотрясанию воздушных масс,-)

Согласен 😉 Ссылка на первоисточник стоит в конце.. Я лишь немного подкорректировал и разместил здесь.

Руки за такое надо откручивать. Что бы не извращались.
Нарушена технология системы охлаждения, да ещё и ужасно как нарушена.

при работе нам не столь важны сами чипы памяти на видеокарте как сам процессор. если увеличить теплопроводность одной части платы к радиатору то сам радиатор будет грется больше, а теплоотдача не изменится. а перегрев самого графического процессора может быть фатальной для видеокарты. все — таки компьютерное оборудование тестируется и проэктируется не криворукими китайцами — сборщиками. имхо все — таки (:

Помогло, искал долго прокладки не нашел, термопаста и алюминиевые пластинки от радиатора помогли решить задачую

Заводские термопрокладки бывают разной теплопроводности — 1 WMK, 3 WMK и 5 WMK. Например термопрокладка на 5WMK толщиной в 5 мм охлаждает так-же эффективно, как термопрокладка на 1 WMK, толщиной 1 мм. Вот тут можно подобрать заводскую теплопроводящую подложку — http://thermoscotch.ru/thermopad.html

Тут привыкли делать ВСЁ СВОИМИ РУКАМИ. Так что не надо рекламить пожалуйста. И музыка на сайте это зло! 🙂

Источник

Поделиться с друзьями
admin
Здоровая спина
Adblock
detector