Термопара для муфельной печи своими руками

Простая мощная муфельная печь

1542396439 screenshot 40

1542396456 screenshot 41

1542396410 screenshot 44

1542396412 screenshot 45

В этой инструкции мы разберем, как своими руками сделать простую муфельную печь для плавки металлов. За 3 часа печь способна разогреваться до температуры около 800°C и это не предел. В ней легко можно плавить алюминий. Собирается печь довольно легко, все материалы можно достать и стоят они недорого. В качестве изолятора используется печной кирпич и стекловата, а корпусом выступает кастрюля из нержавеющей стали. Для контроля температуры печь оборудована специальной электроникой, которую автор заказал из Китая, стоит она недорого. Рассмотрим более подробно, как такая печь работает и как ее собрать!

Материалы и инструменты, которые использовал автор:

Список материалов:
— печной кирпич (шамотный);
— стекловата (или другой изолятор);
— кастрюля из нержавеющей стали (подходящих размеров);
— нагревательный элемент – проволока х23ю5т длиной 18 метров и сечением 1 мм;
— контроллер температуры REX C-100 ;
— реле FOTEK SSR-40 DA ;
— термопара для высоких температур ;
— корпус блока питания от компьютера.

Список инструментов:
— болгарка с диском по бетону;
— чертежные принадлежности и бумага;
— зажимы;
— токарный станок;
— дрель.

Процесс изготовления печи:

Шаг первый. Работаем с кирпичом
Для начала нам нужно особым образом обрезать кирпич, чтобы выложить из него печь. Автор соорудил для таких целей специальную станину для болгарки. Кирпич используется шамотный, такой продается во многих строительных магазинах. Режется кирпич очень просто при помощи болгарки и диска по бетону. Всего автор использовал для своего проекта 6 кирпичей.

1542396312 screenshot 1
1542396274 screenshot 2
1542396251 screenshot 3

1542396245 screenshot 4
1542396255 screenshot 5
1542396237 screenshot 6
1542396332 screenshot 7
1542396264 screenshot 8

1542396308 screenshot 9
1542396268 screenshot 10
1542396315 screenshot 11

1542396280 screenshot 12
1542396339 screenshot 13
1542396310 screenshot 14
1542396314 screenshot 15

1542396353 screenshot 16
1542396351 screenshot 17
1542396336 screenshot 18
1542396293 screenshot 19

Шаг третий. Сборка печи
В качестве корпуса для печи используется кастрюля из нержавеющей стали. Плюс в этом таков, что нержавейка не боится сильного нагревания. Между кирпичом и кастрюлей есть зазор в 3 см, сюда укладывается изолятор в виде минеральной ваты. Конечно, такой изолятор слабоват и печь имеет повышенную теплопотерю. В будущем автор хочет изменить конструкцию, эта была сделана в качестве эксперимента.

Не забываем также установить кирпичи на дно печи и установить изолятор. В стенках кастрюли сверлим отверстия и выводим концы спирали для подключения ее к источнику питания.

1542396309 screenshot 20
1542396317 screenshot 21
1542396378 screenshot 22
1542396390 screenshot 23
1542396370 screenshot 24
1542396395 screenshot 25

1542396375 screenshot 26
1542396420 screenshot 27
1542396363 screenshot 28
1542396346 screenshot 29
1542396397 screenshot 30
1542396440 screenshot 31

1542396372 screenshot 32
1542396355 screenshot 33
1542396371 screenshot 34
1542396370 screenshot 35
1542396398 screenshot 36
1542396436 screenshot 37

Вот и все, печь можно тестировать, автор решил в качестве эксперимента расплавить алюминий. В качестве тигля была использована эмалированная кружка с отрезанной ручкой. Печь без труда справилась с такой задачей.

Конечно, для более эффективной работы нужно будет еще улучшить изоляцию и изготовить крышку для печи. В целом, самоделка получилась удачной, надеюсь, вам проект понравился. Удачи и творческих вдохновений, если решите повторить. Не забывайте делиться своими самоделками с нами!

Источник

Как сделать простую термопару (электричество из двух проволок)

1606306475 screenshot 7
1606306436 screenshot 8

Приветствую всех любителей помастерить, предлагаю к рассмотрению инструкцию по изготовлению простой термопары. Автор ее изготовил, чтобы проверить, какое напряжение и ток она сможет вырабатывать. При измерении у автора термопара выдала 50 мВ и показала ток примерно в 5 мкА.

Конечно, показания довольно скромные, но если таких термопар сделать много, можно соорудить небольшой тепловой генератор. К тому же такую термопару можно использовать в качестве датчика температуры. Собрано все просто, если самоделка вас заинтересовала, предлагаю изучить ее более детально!

Материалы и инструменты, которые использовал автор:

Список материалов:
— константан (проволока от низкоомного резистора ПЭВ-10);
— медная проволока.

Процесс изготовления самоделки:

Шаг первый. Добываем материалы
В качестве материала понадобится кусок медной проволоки, а также будет нужна проволока из резистора ПЭВ-10, подобная проволока встречается и в заграничных аналогах типа 1R00JSMT.

1606306367 screenshot 1
1606306355 screenshot 2

1606306409 screenshot 3

1606306445 screenshot 4

1606306437 screenshot 5

Шаг второй. Скрутка и сварка
Делаем скрутку из двух проволочек, а затем концы проволок нужно сварить. Для сварки автор использует турбозажигалку. Именно в месте сварке при нагревании будет возникать разница потенциалов и по проводникам начнет течь ток. В идеале, должна получиться капелька из двух сваренных металлов.

В завершении скрутку, наверное, нужно раскрутить, иначе будет возникать короткое замыкание.

1606306427 screenshot 6

1606306475 screenshot 7

Шаг третий. Испытания
Подключаем к проводникам мультиметр и разогреваем место сварки обычной зажигалкой. У автора на мультиметре появилось напряжение в 50 мВ, это максимальное напряжение, которое выдает одна скрутка.

Что касается тока, то у автора мультиметр показал 5мкА.

Источник

Электроника для муфельной печи

Начало

Началась эта затея, как обычно начинается множество подобных затей – случайно зашёл в мастерскую к знакомому, а он показал новую «игрушку» – полуразобранную муфельную печь МП-2УМ (рис.1). Печь старая, «родной» блок управления отсутствует, термопары нет, но нагреватель целый и камера в хорошем состоянии. Естественно, у хозяина вопрос – а нельзя ли приделать к ней какое-нибудь самодельное управление? Пусть простое, пусть даже с небольшой точностью поддержания температуры, но чтобы печь заработала? Хм, наверное, можно… Но сначала неплохо было бы посмотреть документацию на неё, а потом уточнить техническое задание и оценить возможности его воплощения.

1 439 1

Итак, первое – документация есть в сети и легко находится по запросу «МП-2УМ» (также лежит в приложении к статье). Из перечня основных характеристик следует, что питание печи однофазное 220 В, потребляемая мощность примерно 2,6 кВт, верхний порог температуры – 1000°С.

Второе – нужно собрать электронный блок, который мог бы управлять питанием нагревателя с потребляемым током 12-13 А, а также мог бы показывать заданную и реальную температуры в камере. При конструировании блока управления следует не забывать, что нормального заземления в мастерской нет и неизвестно, когда будет.

Учитывая вышеперечисленные условия и имеющуюся электронную базу, решено собирать схему, измеряющую потенциал термопары и сравнивающую его с выставленным «заданным» значением. Сравнение проводить компаратором, выходной сигнал которого будет управлять реле, которое в свою очередь будет открывать и закрывать мощный симистор, через который сетевое напряжение 220 В будет поступать на нагревательный элемент. Отказ от фазоимпульсного управления симистором связан с большими токами в нагрузке и отсутствием заземления. Решили, что если при «дискретном» управлении окажется, что температура в камере колеблется в больших пределах, то тогда переделаем схему в «фазовую». Для индикации температуры можно применить стрелочный прибор. Питание схемы – обыкновенное трансформаторное, отказ от импульсного блока питания так же обусловлен отсутствием заземления.

Самым сложным было найти термопару. В нашем городишке магазины таким не торгуют, но выручили, как обычно, радиолюбители с их желанием вечно хранить в гаражах всякое радиоэлектронное барахло. Примерно через неделю после оповещения ближайших знакомых о «термопарной потребности» позвонил один из старейших радиолюбителей города и сказал, что есть какая-то, лежащая ещё с советских времён. Но её надо будет проверить – может оказаться, что она низкотемпературная хромель-копелевая. Да, конечно проверим, спасибо, ну, а для экспериментов подойдёт любая.

Небольшой «поход в сеть» на предмет просмотра того, что уже сделано другими по этой теме, показал, что в основном по такому принципу самодельщики их и конструируют –«термопара – усилитель – компаратор – силовое управление» (рис.2). Поэтому и мы не будем оригинальными – попробуем повторить уже проверенное.

1 439 2

Эксперименты

Сначала определимся с термопарой – она одна и она односпайная, поэтому в схеме компенсации изменения комнатной температуры не будет. Подключив к выводам термопары вольтметр и обдувая спай воздухом с разной температурой из термофена (рис.3), составляем таблицу потенциалов (рис.4) из которой видно, что напряжение растёт с градацией примерно в 5 мВ на каждые 100 градусов. Учитывая внешний вид проводников и сравнивая полученные показания с характеристиками разных спаев по таблицам, взятым из сети (рис.5), можно с большой вероятностью предположить, что применяемая термопара является хромель-алюмелевой (ТХА) и что её можно использовать длительное время при температуре 900-1000 °С.

1 439 3

1 439 4

1 439 5

После выяснения характеристик термопары экспериментируем со схемотехникой (рис.6). Схема проверялась без силовой части, в первых вариантах применялся операционный усилитель LM358, а в окончательный вариант был установлен LMV722. Он тоже двухканальный и тоже рассчитан на работу при однополярном питании (5 В), но, судя по описанию, имеет лучшую температурную стабильность. Хотя, очень может быть, что это была излишняя перестраховка, так как при применённой схемотехнике погрешность установки и поддержания заданной температуры и так достаточно велика.

1 439 6

Результаты

Окончательная схема, управления показана на рис.7. Здесь потенциал с выводов термопары T1 поступает на прямой и инверсный входа операционного усилителя ОР1.1, имеющего коэффициент усиления примерно 34 dB (50 раз). Затем усиленный сигнал проходит через фильтр низкой частоты R5C2R6C3, где 50-тигерцовая помеха ослабляется до уровня –26 dB от уровня, приходящего с термопары (эта цепь была предварительно симулирована в программе RFSim99, расчетный результат показан на рис.8). Далее отфильтрованное напряжение подаётся на инверсный вход операционного усилителя ОР1.2, выполняющего роль компаратора. Уровень порога срабатывания компаратора можно выбирать переменным резистором R12 (примерно от 0,1 В до 2,5 В). Максимальное значение зависит от схемы включения регулируемого стабилитрона VR2, на котором собран источник образцового напряжения.

Для того, чтобы компаратор не имел «дребезга» переключений при близких по уровню входных напряжениях, в него введена цепь положительной обратной связи – установлен высокоомный резистор R14. Это позволяет при каждом срабатывании компаратора смещать уровень образцового напряжения на несколько милливольт, что приводит к триггерному режиму и исключает «дребезг». Выходное напряжение компаратора через токоограничительный резистор R17 подаётся на базу транзистора VT1, управляющего работой реле К1, контакты которого открывают или закрывают симистор VS1, через который напряжение 220 В подаётся в нагреватель муфельной печи.

1 439 7

1 439 8

Блок питания электронной части выполнен на трансформаторе Tr1. Сетевое напряжение поступает на первичную обмотку через фильтр низкой частоты C8L1L2C9. Переменное напряжение со вторичной обмотки выпрямляется мостом на диодах VD2…VD5 и сгладившись на конденсаторе С7 на уровне около +15 В, поступает на вход микросхемы-стабилизатора VR1, с выхода которой получаем стабилизированные +5 В для питания ОР1. Для работы реле К1 берётся нестабилизированное напряжение +15 В, избыточное напряжение «гасится» на резисторе R19.

Появление напряжения в блоке питания индицируется зелёным светодиодом HL1. Режим срабатывания реле К1, а значит и процесс нагрева печи, показывает светодиод HL2 с красным цветом свечения.

Стрелочный прибор Р1 служит для индикации температуры в камере печи при левом положении кнопочного переключателя S1 и требуемой температуры при правом положении S1.

Детали и конструкция

Детали в схеме применены как обыкновенные выводные, так и рассчитанные на поверхностный монтаж. Почти все они установлены на печатной плате из одностороннего фольгированного текстолита размером 100х145 мм. На ней же закреплен трансформатор питания, элементы сетевого фильтра и радиатор с симистором. На рис.9 показан вид на плату со стороны печати (файл в формате программы Sprint-Layout находится в приложении к статье, рисунок при ЛУТ надо «зеркалить»). Вариант установки платы в корпус показан на рис. 10. Здесь же видны закрепленные на передней стенке стрелочный прибор Р1, светодиоды HL1 и HL2, кнопка S1, резистор R12 и пакетный переключатель S2.

1 439 9

1 439 10

Ферритовые кольцевые сердечники для сетевого фильтра взяты из старого блока питания компьютера и затем обмотаны до заполнения проводом в изоляции. Можно использовать дроссели и другого типа, но тогда потребуется внести необходимую правку в печатную плату.

Уже перед самой установкой блока управления на печь, в разрыв одного из проводников, идущих от фильтра к трансформатору был впаян обрывной резистор. Его цель не столько защищать БП, сколько понизить добротность резонансного контура, получающегося при шунтировании первичной обмотки трансформатора конденсатором С9.

Предохранитель F1 впаян на вводе 220 В в плату (установлен вертикально).

Трансформатор питания подойдёт любой, мощностью более 3…5 Вт и с напряжением на вторичной обмотке в пределах 10…17 В. Можно и с меньшим, то тогда потребуется установка реле на более низкое рабочее напряжение срабатывания (например, пятивольтовое).

Операционный усилитель ОР1 можно заменить на LM358, транзистор VT1 на близкий по параметрам, имеющий статический коэффициент передачи тока более 50 и рабочий ток коллектора более 50…100 мА (КТ3102, КТ3117). На печатной плате разведено место и для установки транзистора в smd исполнении (ВС817, ВС846, ВС847).

R15 и R16 припаяны к выводам светодиодов HL1, HL2.

Реле К1 – OSA-SS-212DM5. Резистор R19 набран из нескольких последовательно включенных для того, чтобы не перегревался.

Переменный резистор R12 – RK-1111N.

Кнопочный переключатель S1 – КМ1-I. Пакетный выключатель S2 – ПВ 3-16 (исполнение 1) или подобный из серии ПВ или ПП под нужное количество полюсов.

Симистор VS1 – ТС132-40-10 или другой из серий ТС122…142, подходящий по току и напряжению. Элементы R20, R21, R22 и C10 распаяны навесным монтажом на выводах симистора. Радиатор взят из старого компьютерного блока питания.

В качестве стрелочного электроизмерительного прибора Р1 подойдёт любой подходящего размера и с чувствительностью до 1 мА.

Проводники, идущие от термопары к блоку управления сделаны максимально короткими и выполнены в виде симметричной четырёхпроводной линии (как описано здесь ).

Силовой вводной кабель имеет сечение жил около 1,5 кв.мм.

Наладка и настройка

Отлаживать схему лучше поэтапно. Т.е. запаять элементы выпрямителя со стабилизаторами напряжения – проверить напряжения. Спаять электронную часть, подключить термопару – проверить пороги срабатывания реле (на этом этапе понадобится или какой-то нагревательный элемент, подключенный к внешнему дополнительному блоку питания (рис.11), или хотя бы свеча или зажигалка). Затем распаять всю силовую часть и, подключив нагрузку (например, электрическую лампочку (рис.12 и рис.13)) убедиться, что блок управления поддерживает выставленную температуру, включая и выключая лампочку.

1 439 11

1 439 12

1 439 13

Настройка может понадобиться только в усилительной части – здесь главное, чтобы напряжение на выходе ОР1.1 при максимальном нагреве термопары не превышало уровня 2,5 В. Поэтому если выходное напряжение велико – то его следует понизить изменением коэффициента усиления каскада (уменьшив сопротивление резисторов R3 и R4). Если же используется термопара с малым выходным значением ЭДС и напряжение на выходе ОР1.1 получается небольшим – то в этом случае нужно увеличить коэффициент усиления каскада.

Номинал подстроечного резистора R7 зависит от чувствительности применяемого прибора Р1.

Можно собрать вариант блока управления без индикации напряжения и, соответственно, без режима предварительной установки нужного температурного порога – т.е. удалить из схемы S1, Р1 и R7 и тогда для выбора температуры следует сделать риску на ручке резистора R12 и на корпусе блока нарисовать шкалу с температурными отметками.

Провести калибровку шкалы несложно – на нижних пределах это можно сделать с помощью термофена паяльника (но нужно как можно больше прогревать термопару, чтобы её длинные и относительно холодные выводы не остужали место термоспая). А более высокие температуры можно определить по плавлению разных металлов в камере печи (рис.14) – процесс это относительно долгий, так как требуется изменять установки малым шагом и давать печи достаточное время для прогрева.

1 439 14

Фото, показанное на рис. 15, сделано при первых включениях в мастерской. Температурная калибровка ещё не была сделана, поэтому шкала прибор чистая – в дальнейшем на ней появится множество разноцветных меток, нанесённых маркером прямо на стекло.

1 439 15

Через некоторое время владелец печи позвонил и пожаловался на то, что перестал загораться красный светодиод. При проверке оказалось, что он вышел из строя. Скорее всего, это произошло из-за того, что при последнем включении проверялись возможности печи и камера, со слов владельца, нагревалась до белого цвета. Светодиод заменили, блок управления переносить не стали – во-первых, может быть, дело было и не в перегреве блока управления, а во-вторых, больше таких экстремальных режимов не будет, так как нужды в таких температурах нет.

Андрей Гольцов, r9o-11, г. Искитим, лето 2017

Источник

Муфельная печь руками не из плеч

Здравствуйте, уважаемые Пикабутяне. Решил я, на ночь глядя, поделиться своим «опытом» в создании муфельной печи для керамики с нуля. Быть может, кому-то пригодится.
Небольшое вступление. Пришел я к этому, когда вспомнил, что в детстве любил лепить из пластилина, а потом и из глины, пока в одном творческом кружке мне это желание не отбили. А сейчас что-то опять руки зачесались)
Чтоб мои новые «поделки» из глины было не так просто сломать, их необходимо обжечь в печи при 800-1000 градусах (духовка отпала сразу)). Посмотрел я на цены печей и понял, что буду мастерить сам. Хорошо, что перебрался в крупный город. Нужные запчасти здесь найти проще, чем в моем родном уездном городе в 30к жителей. В общем, муфельная печь состоит из муфеля (сейчас знатоки набегут, и скажут что я обманщик и у меня не муфельная печь), термопары для измерения температуры внутри, корпуса, теплоизоляции, спирали и управляющего устройства с терморегулятором. У меня скорее камерная печь, но в интырнетах такую печь тоже часто называют муфельной. Не претендую на истину, просто делюсь опытом.
Корпус я попросил сварить коллег, т.к. сам бы я ровно не сварил из-за кривых рук) Вышло неплохо. Фотки не могу найти. Вставлять буду что есть, уж простите.

15490585091160305

Здесь уже с изоляцией из шамотного легковесного кирпича. Кладочная смесь для каминов, дешевая из Леруа. Не берите ее никогда, гуано редкостное. Сразу посыпалась вся. Делал корпус разборным, чтоб удобнее было везти домой. В кирпиче канавки для спиралей (мотал сам из суперфехраля). Снаружи утеплил каменной ватой и «облагородил» оцинковкой)

1549058916128315491

Слева болтается блок управления с терморегулятором ТРМ-251. Внутри него твердотельное реле, которое управляется ТРМ-ом и подает сигнал на контактор.

1549059105155880738

Это еще без проводов. Ну и автоматы, естественно, тоже нужны.
Конструкцию приходилось несколько раз менять(а точнее, утеплять). В начале потери были большие и мощности не хватало. Впоследствии ее немного раздуло ))

1549059325153630781

Что-то уже простыня выходит.. В общем, внутри она теперь выглядит так:

1549059519177194860

Утеплять нужно капитально. У меня снаружи каменная вата около 7см, потом прессованные плиты 3см и кирпич (не помню, сантиметров 6). Еще и поверх оцинковки обмотал оставшейся ватой (фоткать не буду, выглядит убого))
Спиралей немного, но свою работу делают. Фехраль брал 1.6 мм, сделал на 3.5 кВт примерно. На полную не кочегарил, т.к. есть режим нагрева для глины, чтоб не разлетелась. Тестировал после последней «модернизации» всего один раз, с выдержками и паузами за 6 с половиной часов вышел на 1000 градусов.

1549060144133161885

Источник

Поделиться с друзьями
admin
Здоровая спина
Adblock
detector